
ALIEN TECHNOLOGY®

JAVA
DEVELOPER'S

GUIDE
September 2008

All Readers

Legal Notices
Copyright ©2008 Alien Technology Corporation. All rights reserved.
Alien Technology Corporation has intellectual property rights relating to
technology embodied in the products described in this document, including
without limitation certain patents or patent pending applications in the U.S. or
other countries.

This document and the products to which it pertains are distributed under
licenses restricting their use, copying, distribution and decompilation. No part of
this product documentation may be reproduced in any form or by any means
without the prior written consent of Alien Technology Corporation and its
licensors, if any. Third party software is copyrighted and licensed from Licensors.
Alien, Alien Technology, the Alien logo, Nanoblock, Fluidic Self Assembly, FSA,
Gen2Ready, Squiggle, Nanoscanner and other graphics, logos, and service
names used in this document are trademarks of Alien Technology Corporation in
the U.S. and other countries. All other trademarks are the property of their
respective owners. U.S. Government approval required when exporting the
product described in this documentation.

Federal Acquisitions: Commercial Software -- Government Users Subject to
Standard License Terms and Conditions. U.S. Government: If this Software is
being acquired by or on behalf of the U.S. Government or by a U.S. Government
prime contractor or subcontractor (at any tier), then the Government's rights in
the Software and accompanying documentation shall be only as set forth in this
license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for
Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212
(for non-DoD acquisitions).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARANTEES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGMENT ARE HEREBY
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE
HELD TO BE LEGALLY INVALID.

 TABLE OF CONTENTS

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

i

Alien Technology®

Java Developer’s Guide
All Alien RFID Readers
September 2008

Table of Contents

CHAPTER 1 INTRODUCTION ... 1
Audience..1
Type Conventions..1
Overview..1
JavaDocs...2
Installation ...2
System Compatibility ...2
API Version..2
A Note on Serial Communication ..2

CHAPTER 2 READER CLASSES.. 4
Introduction..4
Creating a Reader Object from a DiscoveryItem ..4
Directly Instantiating a Reader ..5
Opening and Closing a Reader Connection..5
Communicating with a Reader ..6
AlienClass1Reader class...6
AlienClassBPTReader class ...6

Battery Powered Tag Public Methods ..7
AlienClassOEMReader class ..8

AlienDLEObject class ...9
Alien Reader Class Exceptions ...10

AlienReaderCommandErrorException..11
AlienReaderConnectionException ..11
AlienReaderInvalidArgumentException ..11
AlienReaderNoTagException..11
AlienReaderNotValidException...11
AlienReaderTimeoutException ...11

CHAPTER 3 TAG CLASSES ... 12
Introduction..12
Reading Tags ..12
Tag class ...12

Tag Public Methods ..13
TagUtil class ..13
TagTable class ..14
TagTableListener interface..14

CHAPTER 4 DISCOVERY CLASSES.. 15
Introduction..15
DiscoveryListener interface ...15
DiscoveryItem class...15

TABLE OF CONTENTS

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G
ii

DiscoveryItem Public Methods..16
SerialDiscoveryListenerService class ...16

SerialDiscoveryListenerService Public Methods ..17
NetworkDiscoveryListenerService class ...18

NetworkDiscoveryListenerService Public Methods ..18
Discovery Service Exceptions ...19

AlienDiscoverySerialException ...19
AlienDiscoverySocketException ...19
AlienDiscoveryUnknownReaderException ...19

CHAPTER 5 NOTIFY CLASSES.. 20
Introduction..20
MessageListenerService class..20

MessageListenerService Public Methods...21
MessageListener interface ..22
Message class...22

Message Public Methods..22
ErrorMessage class...23
Message Class Exceptions ...24

AlienMessageConnectionException ...24
AlienMessageFormatException ..24

APPENDIX A ANNOTATED EXAMPLES .. 25
Introduction..25
AlienClass1ReaderTest.java ...26
AlienClass1Communicator.java ..28
SerialDiscoveryTest.java...30
NetworkDiscoveryTest.java...33
MessageListenerTest.java ..36
TagStreamTest.java ..39
IOStreamTest.java...42

CHAPTER 1 INTRODUCTION

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

1

CHAPTER 1
Introduction

The Java Developer's Guide provides basic instructions for programmatically controlling a
reader using the Java programming language and the class libraries supplied by Alien
Technology® as part of the Developers Kit.

Audience
For the purposes of this book, we assume the readers of the Java Developer’s Guide:

• are competent PC users

• have minimal previous knowledge of radio-frequency identification technology

• are experienced in Java software development

Type Conventions
• Regular text appears in a plain, sans-serif font.

• External files and documents appear in italic text.

• Class names appear in a fixed-width serif font.

• Things you type in, and sample code appear:
indented, in a fixed-width serif font.

• Longer blocks of sample code appear:

within a shaded, outlined block
in a smaller, fixed-width serif font

Overview
The Alien RFID Reader can be programmatically controlled using a number of systems
and languages. This document focuses on controlling the reader using the Java library
supplied with the developer’s kit. This library takes the form of a single JAR file, called
"AlienRFID.jar", located in the Jars directory on the developer kit CD.

The library contains five discrete functional groups (Java packages) for controlling
various aspects of the reader:

• reader - classes for communicating with a reader

• tags - classes dealing with RFID tags and EPC data

• discovery - classes for discovering the locations of readers connected by
RS-232 or Ethernet

• notify - classes for listening to "push" notifications and streamed data from
readers over the LAN

INTRODUCTION CHAPTER 1

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

2

• util – classes for performing bit operations, converting between
hex/ASCII/binary strings, XML parsers, serial port management, and for
determining the API version.

JavaDocs
The automatically generated JavaDoc class documentation for the AlienRFID.jar library is
also included on the developer kit CD. This documentation set is found in the "doc"
directory.

Installation
To use the Alien RFID library from within Java applications and Java applets, the
AlienRFID.jar file must be added to the Classpath of the application or project. Each
development system handles adding Jar files in a different manner and as such the
development system documentation should be consulted for guidance on this topic.

System Compatibility
The class files that reside inside the AlienRFID.jar file are all Java 1.3 compliant. The
library contains no user interface classes, allowing it to run within simple web applets, or
full Swing-based Java applications.

API Version
The version number and release date for each build of the AlienRFID.jar file is contained
within fields of the static class, com.alien.enterpriseGateway.util.API.

package com.alien.enterpriseRFID.util;

public class API {
 public static String version = "2.2.6";
 public static String date = "19 Jun 2008";
 public static String author = "David Krull";
}

A Note on Serial Communication
All Alien readers can be operated either via serial communications or over the network.
Networking classes are built into the basic Java language and by combining the
AlienRFID.jar file with a standard Java implementation; all the tools are present to use a
reader over the network. However Java classes for serial communications are not part of
the standard Java distribution. These are available as a no-cost addition from Sun
Microsystems at the following website: http://java.sun.com/products/javacomm/

These serial communications classes (the javax.comm package) must be installed before
an Alien reader can be used over serial ports. Complete instructions for installing the
javax.comm package on a variety of platforms are included in the download. Installation
simply involves placing a handful of files inside your JDK and/or JRE installation.

CHAPTER 1 INTRODUCTION

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

3

If the serial classes are not installed, you can still communicate with readers using
TCP/IP. In this circumstance, a warning message is issued to stdout when a reader class
is instantiated:

No Serial Ports Available
The Java Class Libraries for Serial Communication are not
present on this machine.

READER CLASSES CHAPTER 2

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

4

CHAPTER 2
Reader Classes

Introduction
The reader classes are the primary classes for communicating with a reader either over
the network or a serial port. Typically the reader object will be obtained from a
DiscoveryItem object, as discussed in a subsequent chapter. However, if the location
(either serial port or network address) of the reader is known, a reader object can be
instantiated directly without the need of any discovery classes.

Once a valid reader object is created, it offers you a number of simple commands that
fully implement the command set described in the Reader Interface Guide.

The parent reader class, AbstractReader, provides the base functionality of a generic
reader class, handling serial and network communications, and low-level methods for
sending commands to a reader and receiving back responses. As its name suggests it is
an abstract class and therefore cannot be instantiated, so one of its subclasses is used
instead:

• AlienClass1Reader is the class representing the all of Alien's Class I passive
readers, and exposes all of the reader commands of the passive readers
through it’s API. The vast majority of Alien readers is handled by this single
class.

• AlienClassOEMReader extends AlienClass1Reader to communicate with
Alien RFID OEM Modules, using a binary protocol. Only serial communication
is possible with OEM Modules.

• AlienClassBPTReader extends AlienClass1Reader and includes all of the
additional functionality of the Battery Powered Tag reader. We discuss
AlienClassBPTReader in a later chapter.

Creating a Reader Object from a DiscoveryItem
If discovery classes are used (see subsequent chapters), any readers that are found on
the network or serial ports are represented by DiscoveryItem objects. To derive a
reader object from a DiscoveryItem, use the following method:

AlienClass1Reader reader = discoveryItem.getReader();

If the discovered reader is actually a Battery Powered Tag Reader or OEM Module, the
reader object that is returned will actually be of the appropriate class, and can be cast as
such:

AlienClass1Reader class1Reader = discoveryItem.getReader();

if (class1Reader instanceof AlienClassBPTReader) {
 AlienClassBPTReader classBPTReader = (AlienClassBPTReader)class1Reader;
} else if (class1Reader instanceof AlienClassOEMReader) {
 AlienClassOEMReader classOEMReader = (AlienClassOEMReader)class1Reader;
}

Example Code: Recasting a Reader Object

CHAPTER 2 READER CLASSES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

5

Directly Instantiating a Reader
If it is known that a reader exists on a specified serial port or network address, a new
reader object can be created directly without having to use the discovery classes. One
way to do this is to instantiate the reader object using the no-arguments constructor, and
then use the setConnection() method to specify the name of the serial port it is connected
to or its network address.

Example of instantiating a reader on a serial port:

 AlienClass1Reader reader = new AlienClass1Reader();
reader.setConnection("COM1");

Example of instantiating a reader at a network address:

AlienClass1Reader reader = new AlienClass1Reader();
reader.setConnection("1.2.3.4", 23);
reader.setUsername("alien");
reader.setPassword("password");

Note that the IP address of the reader (as a String) and the port number it uses for
network commands (as an integer, typically port 23 – the Telnet port) must both be given.
Also, before connecting to a network-based reader, you must specify the username and
password using the setUsername() and setPassword() methods. By default all readers
use "alien" as the username and "password" as the password.

The AlienClass1Reader class automatically authencates you when you open a socket
connection, but you must specify these values first. Failure to set the correct username
and password will result in an exception being thrown when trying to connect to a reader
on the LAN.

There are other methods used to specify the serial port or network address:
 AlienClass1Reader.setSerialConnection("COM1");
 AlienClass1Reader.setNetworkConnection("1.2.3.4", 23);
 AlienClass1Reader.setNetworkConnection("1.2.3.4:23");

You can also specify this information in the constructor:
 AlienClass1Reader reader = new AlienClass1Reader("COM1");
 AlienClass1Reader reader = new AlienClass1Reader("1.2.3.4:23");

Opening and Closing a Reader Connection
Once you instantiate a reader object and configure its connection settings, you may then
send commands to it and ask it for data. To open a reader connection, use the following
method:

reader.open();

If the connection fails, an AlienReaderConnectionException is thrown.

A test can be made on a reader object to see if a connection is already open:

reader.isOpen();

This method returns true if the connection is open, false if not. Finally, use the following
method to close a reader connection:

reader.close();

READER CLASSES CHAPTER 2

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

6

Communicating with a Reader
All commands to and from the reader are ASCII text based messages that take the form
of command-response pairs (the OEM Module uses a binary communication protocol,
which is hidden from you by the AlienClassOEMReader class). The most basic way to
communicate with a reader is to use a method called doReaderCommand(), which sends
an ASCII command and returns the ASCII response.

String readerName = reader.doReaderCommand("get ReaderName");

However, this method requires knowledge of the reader command set and requires you
to parse and process all reader responses. For instance, in the above example, the
readerName variable would be set to "ReaderName = Alien RFID Reader" (the reader's
response), which probably isn't what you wanted (just the reader's name).

To make life simpler for the developer, the reader classes provide many additional
methods that directly correspond to the reader command set. For example, there is a
method called getReaderName(), which returns just the reader's name (not the entire
response). Similarly, there is a method called getPersistTime(), that is effectively the
same as calling doReaderCommand("get PersistTime") and then parsing the string reply
and casting it into an integer value.

AlienClass1Reader class
The AlienClass1Reader class provides access to the base command set of all Alien
Class 1 RFID readers. Rather than manage individual classes for each reader model, this
common class handles all of them. Some methods in AlienClass1Reader may not apply
to older readers, depending on the firmware revision and model. Attempting to call these
methods will likely result in an exception being thrown (see end of this chapter for reader
exceptions).

Each of the reader's attributes is exposed by getter and setter methods, as well as other
reader commands like notifyNow(), autoModeReset(), programTag(), etc. Additionally,
some reader commands can be issued in a number of ways, as provided by the API. For
example, nine methods are available to help you set tag masks.

See the JavaDocs for a complete listing of AlienClass1Reader methods and their
descriptions. There are over 380 public methods in this class alone, so we won't describe
each one of them here. The remaining chapters deal with specific API topics, and the
appendices outline each of the sample applications provided by the API.

The rest of this chapter describes how to use the AlienClassBTPReader and
AlienClassOEMReader classes, which allow you to work with the older ALR-2850
Battery-Powered Tag (BPT) reader and ALR-9930 OEM module.

AlienClassBPTReader class
The Alien Battery Powered Tag Readers support extra commands especially designed to
take advantage of the enhanced functionality of Alien's Battery Tags. These extra
commands fall into three categories:

Memory

CHAPTER 2 READER CLASSES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

7

The Battery Tags can optionally support read-write on-board memory, typically in the
range of 4K to 16K bytes. The memory commands described in this document allow this
tag memory to be read and written in discrete blocks via RF communication.

Sensors
The Battery Tags can optionally support the use of on-board sensors such as
temperature or vibration sensors. The sensor commands can be used to interrogate and
control the use of these tag devices.

Logging
If a tag is equipped with one or more sensors and on-board memory, it can be instructed
to autonomously log data to tag memory even in the absence of an RF field. The logging
commands are the interface to this functionality.

Battery Powered Tag Public Methods
As mentioned previously, the methods available to the AlienClassBPTReader class
directly mirror the command line options for the BPT Reader as discussed in the Reader
Interface Guide. Following is a brief list of these methods. Please refer to the JavaDocs
for full details of these command.

public Tag getTagID(String tagID)
Returns the ID of a unique tag specified by the mask commands.

public String getTagInfo(String tagID)
Returns information about a single tag.

public int getSensorValue(String tagID)
Returns the sensor value of the tag's onboard sensor.

public boolean isLogging(String tagID)
Returns the status of Logging Mode for the specified tag.

public void setLogging(String tagID, boolean isLogging)
Enables or disables logging for a specified tag.

public byte[] getLoggingInterval(String tagID)
Returns the periodicity at which the tag logs sensor data to tag memory.

public void setLoggingInterval(String tagID, int hours, int mins, int secs)
Sets the periodicity at which the tag logs sensor data to tag memory.

public short[] getMemory(String tagID, int lengthIndex, int startIndex)
Returns a chunk of tag memory from the specified tag.

public boolean setMemory(String tagID, int startIndex, byte byteArray[])
Stores a series of bytes into tag memory.

public void clearMemory(String tagID)
Completely erases the memory of a specified tag.

public int getMemoryPacketSize()
Returns the number of bytes to use in each memory packet to and from the tag.

public void setMemoryPacketSize(int memoryPacketSize)
Specifies the number of bytes to use in each memory packet to and from the tag.

READER CLASSES CHAPTER 2

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

8

AlienClassOEMReader class
Although AlienClassOEMReader inherits from AlienClass1Reader, its actual
implementation is quite different. This is because while all other Alien RFID Readers
communicate with an easy-to-read ASCII-based command/response protocol, the OEM
Modules use a binary protocol. The difference is clear comparing even a simple
command like "look for tags and tell me what you see":

ASCII-Based Protocol Example
Command get Taglist
Response 0102 0304 0506 0708

8000 8004 13DB 34DE

Binary Protocol Example
Command 10 01 21 00 40 00 01 03 03 00 00 01 04 EE 10 02
Response 21 49 40 01 D1 3B

21 49 40 02 00 00 08 01 02 03 04 05 06 07 08 4C D8
21 49 40 02 00 00 08 80 00 80 04 13 DB 34 DE 4C D8
21 49 40 03 00 02 D2 F4 D3 95 CC F4

AlienClassOEMReader overrides the send and receive methods of AlienClass1Reader
taking care of packetizing the command and depacketizing the reader's response. It also
overrides the reader command methods that apply to the OEM Module, replacing the
simple ASCII command strings with their counterparts in the binary protocol.

The command set of the OEM Module is a subset of other Alien readers, and some
operations like AutoMode and NotifyMode are missing. To compensate for this, some of
this high-level functionality it taken over by AlienClassOEMReader. For instance, the
class implements a very basic version of AutoMode – turning it on causes the class to
repeatedly ask the reader to read for tags, storing the detected tags in a taglist internal to
the class (rather than being stored on the reader itself. Calling getTagList() while
AutoMode is on returns this internal taglist, rather than issuing an acquire command to
the reader.

AlienClassOEMReader also supports a basic command-line interface, such as that
provided by the Gateway demonstration software. The Command Line Interface tool
allows you talk to an OEM Module using the same (though more restricted) ASCII
protocol:

CHAPTER 2 READER CLASSES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

9

Alien>help

*
* Help
*

GENERAL:
 Help (H)
 Info (I)
 ! (Repeat Last Command)
 Get ReaderName
 Get ReaderType
 Get ReaderVersion
 Get MfgInfo
 Get|Set AntennaSequence (i, j, k...)
 Get|Set Antenna
 Get ExternalInput
 Set ExternalOutput
TAGLIST:
 Get|Set AcquireMode
 Get|Set AcqCycles
 Get|Set AcqCount
 Get|Set AcqEnterWakeCount
 Get|Set AcqExitWakeCount
 Get|Set AcqSleepCount
 Get|Set PersistTime (secs)
 Get TagList {n}
 Clear TagList
 Wake
 Sleep
 Get|Set Mask (All | bitLen, bitPtr, XX XX)
AUTONOMOUS MODE:
 Get|Set Automode (On or Off)
 AutoModeReset
PROGRAMMING:
 Program Tag = XX XX XX XX XX XX XX XX
 Verify Tag
 Erase Tag
 Kill Tag = XX XX XX XX XX XX XX XX YY
 Lock Tag = YY
MISC:
 Get Timer
 Set ReaderCommand = XX XX XX...
 RC = XX XX XX...

(XX = TagID byte)
(YY = LockCode byte)

Alien>get taglist
Tag=0102 0304 0506 0708 Disc=Fri Jun 18 12:58:18 PDT 2004 Last=Fri Jun 18
12:58:18 PDT 2004 Ant=0 Count=3

Alien>set AntennaSequence = 0,1
AntennaSequence (i, j, k...) = 0, 1

Example: Using Comand Line Interface Application With OEM Module

This is not to imply that you can connect a host to an OEM Module and communicate
with terminal software using the ASCII command protocol – but the capability exists for
the AlienClassOEMReader class to react to text-based commands. It does this by
overriding AbstractReader's sendString() and receiveString() methods, catching strings
that look like known commands and handling them with other methods that are private to
the class.

AlienDLEObject class
The binary protocol used for communicating with the OEM Module is not nearly as simple
to use as the ASCII protocol. Commands, arguments, and return values are all specified
as sequences of bytes, and are packetized for transmission to and from the OEM

READER CLASSES CHAPTER 2

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

10

Module. This packetization involves adding ReaderNumber and SessionID bytes to the
command/response payload, and then DLE (Data Link Escape) and SOM (Start of
Message) tokens at the beginning of a message, and corresponding EOM (End of
Message) and DLE tokens at the end of the message (hence the name,
AlienDLEObject). Furthermore, CRC bytes must be calculated and added onto the
packet for verification of transmission.

These tasks are made easier with the AlienDLEObject class, which provides constants
for all of the commands, subcommands, and response codes that the OEM Module
understands. The prepareGenericCommand() series of methods allow you to simply
specify the command and optional arguments and will packetize the command for you.

AlienClassOEMReader reader = new AlienClassOEMReader("COM1");

AlienDLEObject command = new AlienDLEObject();

// Turn all external digital outputs off
command.prepareGenericCommand(readerCommand.CMD_SET_IO_PORT_VALUE, 0);

reader.issueReaderCommand(command);

Example Code: Creating and Issuing a DLE Command

But where is the reader's response? When AlienClassOEMReader's
issueReaderCommand() method is done sending the command, it waits for the reader's
response and fills in a number of fields in the AlienDLEObject object with the data.

public byte[] replyBuffer;
This is where the raw bytes of the reader's reply are stored.

public int replyCommType;
The CommType is the reader's response code, which indicates success (0x00), some
other non-error condition (<0x80), or an error condition (>0x80).

public String replyCommTypeMessage;
Returns a human-readable string describing the CommType.

public int replyValueInt;
If the response data is a single byte (the ReaderNumber, for instance), it will be be cast
to an int and stored here for quick access.

public byte[] replyValueHexArray;
All of the response data bytes are stored here for quick access.

public int[] replyValueIntArray;
All of the response data bytes are converted to integers and stored here for quick access.

Alien Reader Class Exceptions
The classes in the com.alien.enterpriseRFID.reader package handle error circumstances
by throwing exceptions back to the calling object. There are six reader exceptions, all
extending from a single AlienReaderException class:

• AlienReaderCommandErrorException

• AlienReaderConnectionException

• AlienReaderInvalidArgumentException

CHAPTER 2 READER CLASSES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

11

• AlienReaderNoTagException

• AlienReaderNotValidException

• AlienReaderTimeoutException

AlienReaderCommandErrorException
This exception may be thrown if the reader responds to a command with an error.

AlienReaderConnectionException
This exception may be thrown if there is a problem connecting to a reader. For example,
if a serial connection is attempted but the serial port is already in use by another
application, or a network connection is attempted but the reader can't be found on the
network.

AlienReaderInvalidArgumentException
This exception may be thrown by the AlienClassOEMReader class if a command is sent
to the reader with arguments out-of-range or an improper number of arguments.

AlienReaderNoTagException
This exception may be thrown by AlienClassBPTReader if a command is sent to a
specific Battery Tag, but the tag cannot be found.

AlienReaderNotValidException
This exception may be thrown by any of the reader classes if a connection is attempted
but the device on the other end isn't an Alien RFID Reader.

AlienReaderTimeoutException
This exception may be thrown by any of the reader classes if any reader transaction
takes longer than the timeout duration. The default timeout is 10 seconds, but this can be
changed with the setTimeOutMilliseconds () method.

TAG CLASSES CHAPTER 3

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

12

CHAPTER 3
Tag Classes

Introduction
Tags play a very important part in the RFID reader and tag system. For this reason there
is a single class devoted to storing and manipulating tag information: the Tag class.
Additional classes and an interface are helpful for managing raw tag data and tag lists
within your own applications.

Reading Tags
The reader classes allow tags to be read by the reader and return the results either as a
single Tag object or an array of Tag objects:

Tag[] tagList = reader.getTagList();

You may also get tag data from a reader by receiving a notification message from it (see
next chapter). In either case, each returned tag is represented by a Tag object, which
encapsulates not just the tag's ID but also data telling where, when, and how many times
the tag was reader

Tag class
The Tag class has the following members, each of which is accessible through getters
and setters in the API:

• Tag ID – a string representing the tag's EPC code

• Discover Time – the time the tag was first seen by the reader

• Last Seen Time – the time the tag was last seen by the reader

• Count – the number of times the reader has read the tag since it was first
seen

• Antenna – the (transmit) antenna number where the tag was last seen

• Protocol – the air protocol used to acquire the tag's ID

• TransmitAntenna & ReceiveAntenna – Multi-static antenna systems, such
as the ALR-9800 can indicate which antenna was transmitting, and which
antenna was receiving when the tag was acquired.

• G2Data – The reader can optionally fetch additional tag data besides the tag's
EPC.

• RSSI – The reader can optionally report the tag's Return Signal Strength
Indication.

• Speed & SmoothSpeed – The reader can optionally measure the tag's
speed. Repeated measurements can generate a smoothed speed value.

• SmoothPosition – Repeated speed measurements integrated over time
gives you a measurement of the tag's position.

CHAPTER 3 TAG CLASSES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

13

• Direction – whether the tag is approaching or receeding from the antenna
(requires speed data)

Tag Public Methods
Some of the more useful public methods provided by Tag are listed below.

public String getTagID()
Returns the tag's ID.

public int getAntenna()
Returns the antenna that this Tag was last seen on.

public long getDiscoverTime()
Returns the time this Tag was first seen by the reader.

public long getRenewTime()
Returns the time this Tag was last seen be the reader.

public int getRenewCount()
Returns the number of times this Tag has been read.

public int getRSSI()
Returns the last RSSI measurement for this tag.

public int getSmoothSpeed()
Returns the averaged/smoothed speed of this tag.

public int getSmoothPosition()
Returns the tag's position, relative to its first read.

public int getDirection()
Returns the apparent direction of the tag, toward or away from the antenna.

TagUtil class
Static methods for parsing and decoding raw tag list data are available in TagUtil:

public static Tag[] decodeTagList(String tagList)
Decodes a text-based tag list message into an array of Tags.

public static Tag decodeTag(String tagData)
Decodes a single text-based line of tag list data into a single Tag item.

public static Tag[] decodeXMLTagList(String xmlTagList)
Decodes an XML-based tag list message into an array of Tags.

public static Tag decodeXMLTag(String xmlTagData)
Decodse an individual tag's information from an XML-based tag message.

public static Tag[] decodeCustomTagList(String tagList, String
customFormatString)
Decodes a custom-formatted taglist message into an array of Tags, using the supplied
TagListCustomFormat definition.

TAG CLASSES CHAPTER 3

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

14

public static Tag decodeCustomTag(String tagLine, String customFormatString)
Decodes a single custom-formmated line of tag list data into a single Tag item, using the
supplied TagListCustomFormat definition.

public static void setCustomFormatString(String customFormatString)
Preloads the TagUtil class with the reader's current TaglistCustomFormat string. It uses
this to later decode custom-formatted taglist data quickly.

public static Tag[] decodeCustomTagList(String tagLine)
Decodes a custom-formatted taglist message into an array of Tags, using the last
supplied TagListCustomFormat definition.

TagTable class
TagTable maintains a HashTable of tags, with methods for adding and removing tags, as
well as hooks for notifying your application about changes to the list:

public boolean addTag(Tag tag)
Adds a Tag to this TagTable.

public boolean removeTag(Tag tag)
Removes a Tag from this TagTable.

public boolean removeOldTags()
Removes Tags from this TagTable whose TimeToLive has reached zero.

public int getPersistTime()
Returns this TagTable's persistence time.

public void setPersistTime(int persistTime)
Specifies the persistence time for tags in this TagTable.

public Tag[] getTagList()
Returns the list of Tags in this TagTable, as an array of Tag objects.

public TagTableListener getTagTableListener()
Returns the object that has been registered with this TagTable to receive events when
the list changes.

public void setTagTableListener(TagTableListener tagTableListener)
Registers a TagTableListener with this TagTable to be notified when the list changes.

TagTableListener interface
This interface used to communicate TagTable changes to other objects. It requires three
methods be implemented:
 public void tagAdded(Tag tag);
 public void tagRenewed(Tag tag);
 public void tagRemoved(Tag tag);

An object that implements this interface can be registered with a TagTable and these
methods would be called whenever tags are added to, updated, or removed from, the
TagTable.

CHAPTER 4 DISCOVERY CLASSES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

15

CHAPTER 4
Discovery Classes

Introduction
In order to use and control a reader, its network address or the serial port number on the
host where it is connected must first be known. The AlienRFID.jar library provides the
classes, SerialDiscoveryListenerService and NetworkDiscoveryListenerService,
needed to automatically search for and discover readers using both of these connection
modes.

In both cases, the service is created, an object is registered as the recipient of discovery
events, and the service is started. Once started, the service runs on its own thread until it
stops automatically (for serial discovery) or is told to stop (for network discovery).

DiscoveryListener interface
In order for an object to receive discovery events from one of the discovery service
classes, it must implement the DiscoveryListener interface. This interface is define as
follows:

public interface DiscoveryListener {
 public void readerAdded (DiscoveryItem discoveryItem);
 public void readerRenewed(DiscoveryItem discoveryItem);
 public void readerRemoved(DiscoveryItem discoveryItem);
}

Definition of the DiscoveryListener interface

When a discovery service runs and discovers a for the first time reader, it calls the
readerAdded() method of the registered listener. Knowledge of this reader is maintained
by the service, and if the same reader is discovered again, the service calls the listener's
readerRenewed() method. If the discovery service loses track of a reader, the listener's
readerRemoved() method is called.

Each method is handed a single argument, a DiscoveryItem. To retrieve an array of
known readers, call the discovery service's getDiscoveryItems() method.

DiscoveryItem class
This class contains key information points that allow any software system to identify and
contact the discovered reader - information such as the ReaderName, ReaderType and
address. The DiscoveryItem provides this information through a series of getters and
setters, but one value method exists to translate this information into a usable reader
class:

public AlienClass1Reader getReader() throws Exception

Calling this method on a DiscoveryItem returns an AlienClass1Reader object, which
the object used to directly interface with a reader, and is described in the following
chapter.

DISCOVERY CLASSES CHAPTER 4

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

16

DiscoveryItem Public Methods
Some of the more useful public methods provided by DiscoveryItem are listed below.

public String getReaderName()
Returns this name of the discovered reader.

public String getReaderType()
Returns the type of the discovered reader.

public String getReaderAddress()
Returns the address of the discovered reader.

public String getReaderMACAddress()
Returns the MAC address of the discovered reader, if provided by that reader (null
otherwise).

public String getConnection()
Returns the connection method of the reader, "serial" or "network".

public int getCommandPort()
Returns the port number that the discovered reader uses to accept host commands over
the network.

public int getLeaseTime()
Returns the amount of time until the discovered reader is due to send another heartbeat
message.

public long getFirstHeartbeat()
Returns the time that this DiscoveryItem first registered a heartbeat signal from its
reader.

public long getLastHeartbeat()
Returns the time that this DiscoveryItem last registered a heartbeat signal from its
reader.

public String getReaderVersion()
Returns ReaderVersion string of the discovered reader.

public AlienClass1Reader getReader()
As discussed above, this method creates an AlienClass1Reader object from the
DiscoveryItem.

SerialDiscoveryListenerService class
Discovery of a reader attached to the serial port of a host computer is simply a case of
checking every serial port for the presence of an Alien reader. This is achieved using the
SerialDiscoveryListenerService class, as in the following code example:

CHAPTER 4 DISCOVERY CLASSES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

17

import com.alien.enterpriseRFID.discovery.*;

public class SerialDiscoveryTest implements DiscoveryListener {

public SerialDiscoveryTest() {
 SerialDiscoveryListenerService service = new SerialDiscoveryListenerService();
 service.setDiscoveryListener(this);
 service.startService();
 ...(application continues)...
}

public void readerAdded(DiscoveryItem discoveryItem) {
 System.out.println("Added:\n" + discoveryItem.toString());
}

public void readerRenewed(DiscoveryItem discoveryItem) {
 System.out.println("Renew:\n" + discoveryItem.toString());
}

public void readerRemoved(DiscoveryItem discoveryItem) {
 System.out.println("Removed:\n" + discoveryItem.toString());
}

Example Code: Serial Discovery (from SerialDiscoveryTest.java)

When the SerialDiscoveryListenerService object is instantiated and started, it
automatically acquires a list of all the serial ports on the host computer and then
proceeds to interrogate each port, looking for a reader. If a reader is found, or on
subsequent scans a reader is lost or renewed, the appropriate DiscoveryListener
method is called.

Additionally, an ActionListener can be registered with the
SerialDiscoveryListenerService. The actionPerformed() method is called when the
SerialDiscoveryListenerService scans each port, and can be used as a progress
monitor. See the example code in the Developer’s Kit for more information.

The default implementation of the Java platform does not ship with classes to
communicate over serial ports. This functionality must be downloaded and installed from
Sun Microsystems at the following website: http://java.sun.com/products/javacomm/.

If the serial library is not installed, instantiating a SerialDiscoveryListenerService
throws an exception with the message "Serial Discovery Instance Failed - Serial Classes
Not Present".

SerialDiscoveryListenerService Public Methods
Some of the more useful public methods provided by DiscoveryItem are listed below.
The public methods for NetworkDiscoveryListenerService are the same as for
SerialDiscoveryListenerService.

public void setDiscoveryListener(DiscoveryListener discoveryListener)
Registers an object with the discovery service to receive messages when readers are
discovered, renewed, or removed.

public void startService()
Starts up the discovery service.

public void stopService()
Stops/pauses the discovery service.

public boolean isRunning()
Returns true if the discovery service is still running.

DISCOVERY CLASSES CHAPTER 4

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

18

public DiscoveryItem[] getDiscoveryItems()
Returns an array of DiscoveryItems representing all of the readers that the discovery
service knows about.

public void setMaxSerialPort(int maxPort)
Set the maximum COM port number to scan to.

public void setSerialPortList(String portList)
Specifies a comma-separated list of COM port numbers to scan.

NetworkDiscoveryListenerService class
Each Alien reader is configured, by default, to broadcast heartbeat messages over its
local subnet. These messages are UDP (User Datagram Protocol) packets containing
small XML documents which detail the reader’s type, name, and contact information. By
listening for these heartbeat messages, the network discovery classes can identify and
report back details of readers that exist on the network.

The class that performs these listening duties is called
NetworkDiscoveryListenerService. Once this class is instantiated and started, it will
run in its own thread until it is stopped. While running, it listens for reader heartbeats on
the listener port (which is specified in the constructor or defaults to 3988), calling either
the readerAdded() or readerRenewed() methods of a registered DiscoveryListener
when it detects a reader. Part of the heartbeat sent out by the reader indicates the time
until the next heartbeat is expected. If this time expires before the next heartbeat is
received, then the service assumes the reader has gone offline and will call the
readerRemoved() method.

Following is a code example demonstrating how to perform network discovery:

import com.alien.enterpriseRFID.discovery.*;

public class NetworkDiscoveryTest implements DiscoveryListener {

public NetworkDiscoveryTest() throws Exception {
 NetworkDiscoveryListenerService service = new
NetworkDiscoveryListenerService();
 service.setDiscoveryListener(this);
 service.startService();
 ...(application continues)...
}

public void readerAdded(DiscoveryItem discoveryItem) {
 System.out.println("Added:\n" + discoveryItem.toString());
}

public void readerRenewed(DiscoveryItem discoveryItem) {
 System.out.println("Renew:\n" + discoveryItem.toString());
}

public void readerRemoved(DiscoveryItem discoveryItem) {
 System.out.println("Removed:\n" + discoveryItem.toString());
}

Example Code: Network Discovery (from NetworkDiscoveryTest.java)

NetworkDiscoveryListenerService Public Methods
The public methods for NetworkDiscoveryListenerService are the same as for
SerialDiscoveryListenerService (see above).

CHAPTER 4 DISCOVERY CLASSES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

19

Discovery Service Exceptions
The classes in the com.alien.enterpriseRFID.discovery package handle error
circumstances by throwing exceptions back to the calling object. There are three
discovery exceptions, all extending from a single AlienDiscoveryException class:

• AlienDiscoverySerialException

• AlienDiscoverySocketException

• AlienDiscoveryUnknownReaderException

AlienDiscoverySerialException
This exception may be thrown by a SerialDiscoveryListenerService if the serial classes
are not present.

AlienDiscoverySocketException
This exception may be thrown by a NetworkDiscoveryListenerService if it is unable to
bind to the specified heartbeat listener port. This is likely because another application has
bound to the same port (perhaps another discovery service).

AlienDiscoveryUnknownReaderException
This exception may be thrown when trying to create a reader object from a
DiscoveryItem through its getReader() method. If the ReaderType contained in the
DiscoveryItem is now a recognized type, then the correct type of reader object cannot be
created, and the method fails.

NOTIFY CLASSES CHAPTER 5

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

20

CHAPTER 5
Notify Classes

Introduction
The notify classes work in conjunction with a reader running in autonomous mode. In
autonomous mode the reader is configured to read tags over and over again without the
need for human interaction. The reader can be configured to send messages to listening
services on the network when specific events occur, such as a timer expiring, tags
added/removed from the taglist, successful/unsuccessful programing, etc.

The notify classes implement such a listening services, constantly waiting and listening
for notification messages from readers, and converting these messages into Java objects
which are then available to your application.

The same notify classes that listen for periodic notification messages from the reader will
also handle streamed data from the reader – the TagStream and IOStream modes push
tag- and I/O- events to the listener as they happen on the reader, providing low-latency
data now achievable through the traditional notification mechanism.

MessageListenerService class
The key class in the notify package is MessageListenerService. This is a service that
listens at a specified port for incoming reader notification messages. Following is the
basic code showing how to use the MessageListenerService:

import com.alien.enterpriseRFID.notification.*;

public class MessageListenerTest implements MessageListener {

public MessageListenerTest() throws Exception {
 MessageListenerService service = new MessageListenerService(3988);
 service.setMessageListener(this);
 service.startService();
 ...(application continues)...
}

public void messageReceived(Message message) {
 System.out.println("Message Received: " + message.toString());
}

Example Code: Using the MessageListenerService

The MessageListenerService is set up to listen to a specified port number, and the
reader (or multiple readers) can then be set up to notify the service on that port. This is
done as follows:

1. Instruct the reader to send notification messages to the host running the
MessageListenerService. For example, if the service is running on a
machine named "listener.alien.com", the following reader command would be
issued:

 reader.setNotifyAddress("listener.alien.com:3988");

CHAPTER 5 NOTIFY CLASSES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

21

2. Instruct the reader about the conditions which should trigger a notification
messages. For example, to tell the reader to send out a tag list every 30
seconds, the following command could be issued:

 reader.setNotifyTime(30);

3. Set the notification message format to XML. In order for
MessageListenerService to be able to decode the notification message for
you, it must be in "XML" or "Text" format:

 reader.setNotifyFormat(reader.XML_FORMAT);

4. Finally tell the reader to start reading tags in autonomous mode. For example
to tell the reader to read as fast as it can until told otherwise, the following
two commands could be issued:

 reader.autoModeReset();
 reader.setAutoMode(reader.ON);

At this point the reader switches into autonomous mode and, as instructed, sends out a
message every 30 seconds to the MessageListenerService, containing its internal tag
list and additional information about the notification.

The listener service as set up above constantly listens for these messages on its own
thread until told to stop. When a message is received, it is parsed and converted into a
Message object, which is passed to the messageReceived() method of the registered
MessageListener.

MessageListenerService Public Methods

public int getListenerPort()
Returns the port number to listening on for incoming notification messages.

public void setListenerPort(int listenerPort)
Specifies the port number to listening on for incoming notification messages.

public MessageListener getMessageListener()
Returns the MessageListener registered to receive notification events.

public void setMessageListener(MessageListener messageListener)
Registers a MessageListener to receive notification events.

public void startService()
Starts the MessageListenerService.

public void stopService()
Stops the MessageListenerService.

public boolean isRunning()
Returns true if the MessageListenerService is running.

public void setIsCustomTagList()
Flags whether to use the custom taglist decoder or the standard "Text" format decoder
when decoding tag data.

NOTIFY CLASSES CHAPTER 5

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

22

MessageListener interface
In order for an object to receive notification events from a MessageListenerService, it
must implement the MessageListener interface. This interface is define as follows:

public interface MessageListener{
 public void messageReceived(Message message);
}

Definition of the MessageListener interface

Only one method to implement, and it simply receives a Message object from the
MessageListenerService.

Message class
A Message object encapsulates a collection of metadata about the notification message
itself, and an array of Tag objects extracted from the taglist portion of the notification
message. It contains the following members, all of which are available through getter and
setter accessor methods:

• ReaderName – the name of the reader

• ReaderType – the type of reader

• IPAddress – the IP address of the reader

• MACAddress – the MAC address of the reader, if provided

• CommandPort – the port number on which to send commands to the reader

• Time – the date and time the message was sent out

• Reason – why the message sent out by the reader

• StartTriggerLines – indicates which external inputs triggered the reader to
start

• StopTriggerLines – indicates which external inputs triggered the reader to
stop

• TagList - an array of Tag objects extracted from the notification

Message Public Methods

public String getReaderName()
Returns the name of the reader that sent the notification message.

public String getReaderType()
Returns the type of the reader that sent the notification message..

public String getReaderIPAddress()
Returns the IP Address of the reader that sent the notification message.

public int getReaderCommandPort()
Returns the Command port number of the reader that sent the notification message.

CHAPTER 5 NOTIFY CLASSES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

23

public String getReaderMACAddress()
Returns the MAC address of the reader that sent the notification message, if provided by
that reader (null otherwise).

public Date getDate()
Returns the date and time of the Message.

public String getReason()
Gets the reason why the reader send the Message.

public int getStartTriggerLines()
Returns the external input lines that triggered this autonomous cycle to start.

public int getStopTriggerLines()
Returns the external input lines that triggered this autonomous cycle to start.

public int getTagCount()
Returns the number of tags in the message's TagList.

public Tag[] getTagList()
Returns the TagList of the notification message, as an array of Tags.

public Tag getTag(int index)
Returns the Tag that holds position index in the message's TagList.

public String getRawData()
Returns the raw content of the notification message, before decoding.

public int getIOCount()
Returns the number of I/O evenbts in the message's IOList.

public ExternalIO[] getIOList()
Returns the IOList from the notification message, as an array of ExternalIOs.

public ExternalIO getIO(int index)
Returns the ExternalIO that holds position index in the message's IOList.

ErrorMessage class
An ErrorMessage object is used by the MessageListenerService to communicate any
problems it had while trying to receive or decode a notification message from a reader.
ErrorMessage extends Message, so it can by handed off to a MessageListener's
MessageReceived() method just the same.

The ErrorMessage will return useful information about the error though the following
methods:

• getReaderIPAddress() – which reader was sending the message

• getReason() – the reason for the error

• getRawData() – the raw data that was received by the reader.

To handle these conditions, use an "instanceof" construct in your MessageReceived() as
follows:

NOTIFY CLASSES CHAPTER 5

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

24

public void MessageReceived(Message m) {
 if (message instanceof ErrorMessage) {
 // message is bad
 System.out.println("Notify error from " + m.getReaderIPAddress());
 System.out.println("Problem is: " + m.getReason());
 System.out.println("Data read is: " + m.getXML());
 } else {
 // message is good
 ...
 }
}

Message Class Exceptions
The classes in the com.alien.enterpriseRFID.notify package handle error circumstances
by throwing exceptions back to the calling object. There are two notify exceptions, all
extending from a single AlienMessageExceptionclass:

• AlienMessageConnectionException

• AlienMessageFormatException

AlienMessageConnectionException
This exception may be thrown if the reader encounters a communication error during the
receipt of a message from a reader.

AlienMessageFormatException
This exception may be thrown if the notification message is not in XML format, or there is
some problem parsing the XML.

APPENDIX A ANNOTATED EXAMPLES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

25

Appendix A
Annotated Examples

Introduction
The following examples are taken from the example source code distributed in the API.
The examples are already throughly commented, but this appendix will provide more
information on how the code is used.

The following copyright statement applies to each of the source code examples, and is
stated here once for brevity:

/**
 * Copyright 2008 Alien Technology Corporation. All rights reserved.
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1) Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2) Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * 3) Neither the name of Alien Technology Corporation nor the names of any
 * contributors may be used to endorse or promote products derived from this
 * software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL ALIEN TECHNOLOGY CORPORATION OR ITS CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * For further information, contact :
 * Alien Technology
 * 18220 Butterfield Blvd.
 * Morgan Hill, CA 95037
 */

ANNOTATED EXAMPLES APPENDIX A

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

26

AlienClass1ReaderTest.java
This example opens a connection to a reader on COM1, fetches it's TagList, and prints
the results.

1 package com.alien.enterpriseRFID.examples;
2
3 import com.alien.enterpriseRFID.reader.*;
4 import com.alien.enterpriseRFID.tags.*;
5
6 /**
7 * Connects to a Reader on COM port #1 and asks it to read tags.
8 *
9 * @version 1.2 Feb 2008
10 * @author David Krull
11 */
12 public class AlienClass1ReaderTest {
13
14 /**
15 * Constructor
16 */
17 public AlienClass1ReaderTest() throws AlienReaderException {
18
19 AlienClass1Reader reader = new AlienClass1Reader();
20 reader.setConnection("COM1");
21
22 // To connect to a networked reader instead, use the following:
23 /*
24 reader.setConnection("10.1.60.107", 23);
25 reader.setUsername("alien");
26 reader.setPassword("password");
27 */
28
29 // Open a connection to the reader
30 reader.open();
31
32 // Ask the reader to read tags and print them
33 Tag[] tagList = reader.getTagList();
34 if (tagList == null) {
35 System.out.println("No Tags Found");
36 } else {
37 System.out.println("Tag(s) found:");
38 for (int i=0; i<tagList.length; i++) {
39 Tag tag = tagList[i];
40 System.out.println("ID:" + tag.getTagID() +
41 ", Discovered:" + tag.getDiscoverTime() +
42 ", Last Seen:" + tag.getRenewTime() +
43 ", Antenna:" + tag.getAntenna() +
44 ", Reads:" + tag.getRenewCount()
45);
46 }
47 }
48
49 // Close the connection
50 reader.close();
51 }
52
53 /**
54 * Main
55 */
56 public static final void main(String args[]){
57 try {
58 new AlienClass1ReaderTest();
59 } catch(AlienReaderException e) {
60 System.out.println("Error: " + e.toString());
61 }
62 }

APPENDIX A ANNOTATED EXAMPLES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

27

63
64 } // End of class AlienClass1ReaderTest

Lines 1-4 – Define the package for this example, and import the required "reader"

and "tags" packages from the library.
Lines 12, 17 – Define the class and constructor for this example.
Lines 19-27 – Instantiate a new AlienClass1Reader object for a reader found on

serial port COM1. Lines 24-26 show how to do the same thing with a
reader on the network. You must set the username and password
properties in the reader object before attempting to open() it over a
TCP connection, since the class needs to authenticate with the reader
at connection time.

Line 30 – Opens a connection with the reader. This claims ownership of the
serial port, or opens a TCP socket to the reader's CommandPort,
depending on the connection type.

Line 33 – Asks the reader to read tags and report back the TagList, parses the
resulting String, and hands you back an array of Tag objects, which we
are storing in the tagList array.

Lines 34-35 – Checks to see if tagList is null – the result you get when there are no
tags, and prints an appropriate message.

Lines 36-47 – Prints a "Tags found" message, then loops through each of the Tags in
tagList, printing out the EPC, discovery and last-seen times, antenna,
and read count. There are also convenient Tag.toString() and
Tag.toLongString() methods.

Line 50 – Closes the connection to the reader. This releases the serial port, or
closes down the TCP socket. Since only once connection (of each
method) can be made to a reader at a time, it is a good idea to close
the connection when you are done, to prevent unwanted blocking of
the reader's command channel. The reader may also disconnect your
TCP socket if it has been idle longer than the NetworkTimeout, or if
another TCP connection is made to the reader from the same IP
address.

Lines 56-61 – The main function, which creates the AlienClass1ReaderTest object,
and catches and prints all exceptions generated therein.

Sample Output:
Tag(s) found:
ID:0000 0000 0000 0000 0000 0006, Discovered:1220395010000, Last Seen:
1220395010000, Antenna:1, Reads:1
ID:0000 0000 0000 0000 0000 000D, Discovered:1220395010000, Last Seen:
1220395010000, Antenna:0, Reads:1
ID:0000 0000 0000 0000 0000 0002, Discovered:1220395010000, Last Seen:
1220395010000, Antenna:0, Reads:1
ID:0000 0000 0000 0000 0000 0007, Discovered:1220395010000, Last Seen:
1220395010000, Antenna:0, Reads:1
ID:0000 0000 0000 0000 0000 000E, Discovered:1220395010000, Last Seen:
1220395010000, Antenna:0, Reads:1

ANNOTATED EXAMPLES APPENDIX A

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

28

AlienClass1Communicator.java
This example opens a connection to a reader on COM1, and begins an interactive telnet-
style session, taking input from the keyboard, sending it to the reader, and printing the
results. Type "q" to quit.

1 package com.alien.enterpriseRFID.examples;
2
3 import com.alien.enterpriseRFID.reader.*;
4 import java.io.*;
5
6 /**
7 * Connects to a Reader on COM port #1 and begins an interactive session.
8 * Enter "q" to quit the session.
9 *
10 * @version 1.1 Feb 2004
11 * @author David Krull
12 */
13 public class AlienClass1Communicator {
14
15 /**
16 * Constructor.
17 */
18 public AlienClass1Communicator() throws Exception {
19 AlienClass1Reader reader = new AlienClass1Reader("COM1");
20 reader.open(); // Open the reader connection
21
22 // Use stdin for user input
23 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
24
25 do {
26 System.out.print("\nAlien>"); // Show prompt
27 String line = in.readLine(); // Grab user input
28 if (line.equals("q")) break; // Quit when "q" is pressed
29 System.out.println(reader.doReaderCommand(line));
30 } while (true); // Repeat indefinitely
31
32 System.out.println("\nGoodbye.");
33 reader.close(); // Close the reader connection
34 }
35
36
37 /**
38 * Main
39 */
40 public static final void main(String args[]){
41 try {
42 new AlienClass1Communicator();
43 } catch(Exception e) {
44 System.out.println("Error: " + e.toString());
45 }
46 }
47
48 } // End of class AlienClass1Communicator

Lines 1-4 – Define the package for this example, and import the required "reader"

and "java.io" packages from the library.
Lines 13, 18 – Define the class and constructor for this example.
Lines 19-20 – Instantiate a new AlienClass1Reader object for a reader found on

serial port COM1, and opens a connection to the reader.
Line 23 – Creates a BufferedReader, to assist in reading input from stdin one line

at a time.

APPENDIX A ANNOTATED EXAMPLES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

29

Lines 25,30 – Sets up an endless do-while loop – the main part of the program.
Line 26 – Prints out the "Alien>" prompt for the user.
Lines 27-28 – Reads a line from stdin, breaking out of the loop if the user enters "q".
Line 29 – Sends what the user typed to the reader, using the generic

doReaderCommand() method. The results are printed to the screen,
exactly as they were received from the reader.

Line 33 – After exiting the do-while loop, we close the connection to the reader
and allow the program to exit.

Lines 40-46 – The main function, which creates the AlienClass1Communicator
object, and catches and prints all exceptions generated therein.

Sample Output:
Alien>get ReaderName
ReaderName = David's 9800

Alien>i network
**
NETWORK COMMANDS
**
 MACAddress = 00:80:66:10:11:6A
 DHCP = ON
 DHCPTimeout = 90
 IPAddress = 10.10.82.72
 Hostname = r72
 UpgradeAddress = http://10.10.82.10/dailybuild/
 NetworkUpgrade = ON
 Gateway = 10.10.82.1
 Netmask = 255.255.255.0
 DNS = 10.1.1.2
 NetworkTimeout = 65535
 CommandPort = 23
 HeartbeatAddress = 255.255.255.255
 HeartbeatPort = 3988
 HeartbeatTime = 3
 HeartbeatCount = -1
 WWWPort = 80
 AcceptConnections = ANY

Alien>t
Tag:0000 0000 0000 0000 0000 000D, Disc:2008/09/02 15:45:01, Last:2008/09/02
15:45:01, Count:1, Ant:0, Proto:2
Tag:0000 0000 0000 0000 0000 000E, Disc:2008/09/02 15:45:01, Last:2008/09/02
15:45:01, Count:1, Ant:0, Proto:2
Tag:0000 0000 0000 0000 0000 0007, Disc:2008/09/02 15:45:01, Last:2008/09/02
15:45:01, Count:1, Ant:0, Proto:2
Tag:0000 0000 0000 0000 0000 0002, Disc:2008/09/02 15:45:01, Last:2008/09/02
15:45:01, Count:1, Ant:0, Proto:2
Tag:0000 0000 0000 0000 0000 0006, Disc:2008/09/02 15:45:01, Last:2008/09/02
15:45:01, Count:1, Ant:1, Proto:2

Alien>

ANNOTATED EXAMPLES APPENDIX A

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

30

SerialDiscoveryTest.java
This example demonstrates how to scan all of the serial ports on the system, looking for
Alien RFID readers.

1 package com.alien.enterpriseRFID.examples;
2
3 import com.alien.enterpriseRFID.discovery.*;
4 import java.awt.event.*;
5
6 /**
7 * Starts a SerialDiscoveryService to scan the local serial ports and look for
8 * Alien Nanoscanner Readers.
9 *
10 * @version 1.1 November 2003
11 * @author David Krull
12 */
13 public class SerialDiscoveryTest implements DiscoveryListener, ActionListener
14 {
15
16 /**
17 * Constructor.
18 */
19 public SerialDiscoveryTest() throws Exception {
20 SerialDiscoveryListenerService service;
21 service = new SerialDiscoveryListenerService();
22 service.setDiscoveryListener(this);
23 service.setActionListener(this);
24 service.startService();
25 while (service.isRunning()) {
26 Thread.sleep(100);
27 }
28 }
29
30
31 /**
32 * A reader has been discovered on a serial port. This method implements the
33 * DiscoveryListener interface.
34 */
35 public void readerAdded(DiscoveryItem discoveryItem) {
36 System.out.println("Reader Added:\n" + discoveryItem.toString());
37 }
38
39 /**
40 * A known reader has been seen again. This method implements the
41 * DiscoveryListener interface, but doesn't really apply to Serial Discovery.
42 */
43 public void readerRenewed(DiscoveryItem discoveryItem) {
44 System.out.println("Reader Renewed:\n" + discoveryItem.toString());
45 }
46
47
48 /**
49 * A reader has been removed from the network and is no longer available or
50 * valid. This method implements the DiscoveryListener interface, but doesn't
51 * apply to serial discovery.
52 */
53 public void readerRemoved(DiscoveryItem discoveryItem) {
54 System.out.println("Reader Removed:\n" + discoveryItem.toString());
55 }
56
57
58 /**
59 * ActionEvents are sent by the SerialDiscoveryListenerService to this method
60 * while it scans the serial ports. This is mainly for the purposes of
61 * debugging and displaying on-screen progress to the user. The ActionEvents
62 * are sent when the discovery service starts scanning each port, and again

APPENDIX A ANNOTATED EXAMPLES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

31

63 * when it is all done scanning.
64 */
65 public void actionPerformed(ActionEvent event) {
66 if (event.getID() == SerialDiscoveryListenerService.SCANNING_PORT) {
67 System.out.println("Scanning Serial Port:" + event.getActionCommand());
68 }
69 if (event.getID() == SerialDiscoveryListenerService.SCANNING_END) {
70 System.out.println("Scanning Finished");
71 System.out.println("Total Readers found = "
72 + service.getDiscoveryItems().length);
73 }
74 }
75
76
77 /**
78 * Main
79 */
80 public static final void main(String args[]) {
81 try {
82 new SerialDiscoveryTest();
83 } catch (Exception e) {
84 System.out.println("Error:" + e.toString());
85 }
86 }
87
88 } // End of class SerialDiscoveryTest

Lines 1-4 – Define the package for this example, and import the required

"discovery" and "java.awt.event" packages from the library.
java.awt.event is only needed because we wish to see the activity of
the SerialDiscoveryListenerService.

Lines 13, 19 – Define the class and constructor for this example. This application
implements the DiscoveryListener interface (for receiving reader
discovery events) and also ActionListener (for receiving activity events
from the SerialDiscoveryListenerService).

Lines 20-21 – Instantiate a new SerialDiscoveryListenerService object.
Line 22 – Tells the service to notify our app (which implements the

DiscoveryListener interface) when readers are discovered.
Line 23 – Tells the service to notify our app of its activity (optional).
Line 24 – Starts the discovery service. It runs on its own now, and will use

callbacks to let us know what is happening.
Lines 25-27 – Sets up an endless do-while loop – we will sit and wait for callbacks

from the service (need to ctrl-C to exit the program).
Lines 35-55 – Implement the DiscoveryListener interface – three methods,

readerAdded() for when a reader is first discovered, and
readerRenewed() and readerRemoved(), which aren't applicable for
serial discovery. The SerialDiscoveryListenerService will call
readerAdded() each time it finds a reader on a COM port. It passes
along a DiscoveryItem containing all of the information required to
connect to the new reader, which we print out.

Lines 65-74 – Implement the ActionListener interface. This is optional, and simply
provides feedback, in the form of ActionEvents, to indicate when the
SerialDiscoveryListenerService examines each serial port, and when it
stops. event.getID() tells you which event it is, and you can compare it
against some constants in the SerialDiscoveryListenerService class.
We print out a message each time a port is scanned, and a final
message indicating how many readers were discovered.
service.getDiscoveryItems() returns an array of DiscoveryItems for
each of the readers discovered on serial ports. You can alternatively

ANNOTATED EXAMPLES APPENDIX A

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

32

start the service, wait a period of time, and then query the service for
the list, instead of implementing the DiscoveryListener interface.

Lines 80-86 – The main function, which creates the SerialDiscoveryTest object, and
catches and prints all exceptions generated therein.

Sample Output:
Scanning Serial Port: COM1

Reader Added:
Reader Name = David's 9800
Reader Type = Alien RFID Tag Reader, Model: ALR-9800 (Four Antenna / Multi-
Protocol / 902-928 MHz)
Reader Address = COM1
Reader MACAddress = 00:80:66:10:11:6A
Connection = Serial
Command Port = 0
Lease Time = 10000
Discovery Method = Automatic

Scanning Serial Port: COM2

Scanning Serial Port: COM3

Reader Added:
Reader Name = David's 9780
Reader Type = Alien RFID Tag Reader, Model: ALR-9780 (Four Antenna / EPC
Class 1 Gen 2/ 915 MHz)
Reader Address = COM3
Reader MACAddress = 00:90:c2:c2:71:d3
Connection = Serial
Command Port = 0
Lease Time = 10000
Discovery Method = Automatic

Scanning Finished
Total Readers found = 2

APPENDIX A ANNOTATED EXAMPLES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

33

NetworkDiscoveryTest.java
This example demonstrates how to run a service that discovers Alien readers on the
network.

1 package com.alien.enterpriseRFID.examples;
2
3 import com.alien.enterpriseRFID.discovery.*;
4
5 /**
6 * Starts a NetworkDiscoveryService to listen for Alien Reader.
7 * heartbeats that are broadcast over the local subnet. The discovery service
8 * notifies this application when a reader is discovered, seen again, or lost.
9 *
10 * @version 1.3 Aug 2008
11 * @author David Krull
12 */
13
14 public class NetworkDiscoveryTest implements DiscoveryListener {
15
16 /**
17 * Constructor.
18 */
19 public NetworkDiscoveryTest() throws Exception {
20 NetworkDiscoveryListenerService service;
21 service = new NetworkDiscoveryListenerService();
22 service.setDiscoveryListener(this);
23 service.startService();
24
25 // Spin while readers are discovered.
26 while (service.isRunning()) {
27 Thread.sleep(100);
28 }
29 }
30
31
32 /**
33 * A new reader has been discovered to the network.
34 * This method implements the DiscoveryListener interface.
35 */
36 public void readerAdded(DiscoveryItem discoveryItem){
37 System.out.println("Reader Added:\n" + discoveryItem.toString());
38 }
39
40 /**
41 * A known reader has been seen again.
42 * This method implements the DiscoveryListener interface.
43 */
44 public void readerRenewed(DiscoveryItem discoveryItem) {
45 System.out.println("Reader Renewed:\n" + discoveryItem.toString());
46 }
47
48
49 /**
50 * A reader has been removed from the network and is no longer available.
51 * This method implements the DiscoveryListener interface.
52 */
53 public void readerRemoved(DiscoveryItem discoveryItem) {
54 System.out.println("Reader Removed:\n" + discoveryItem.toString());
55 }
56
57
58 /**
59 * Main.
60 */
61 public static final void main(String args[]) {
62 try {

ANNOTATED EXAMPLES APPENDIX A

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

34

63 new NetworkDiscoveryTest();
64 } catch (Exception e) {
65 System.out.println("Error:" + e.toString());
66 }
67 }
68
69 } // end of class NetworkDiscoveryTest

Lines 1-3 – Define the package for this example, and import the required

"discovery" package from the library.
Lines 14, 19 – Define the class and constructor for this example. This application

implements the DiscoveryListener interface for receiving reader
discovery events from the NetworkDiscoveryListenerService.

Lines 20-21 – Instantiate a new NetworkDiscoveryListenerService object.
Line 22 – Tells the service to notify our app (which implements the

DiscoveryListener interface) when readers are discovered.
Line 23 – Starts the discovery service. It runs on its own now, and will use

callbacks to let us know what is happening.
Lines 26-28 – Sets up an endless do-while loop – we will sit and wait for callbacks

from the service (need to ctrl-C to exit the program).
Lines 36-55 – Implement the DiscoveryListener interface – three methods,

readerAdded() for when a reader is first discovered, readerRenewed()
for when subsequent heartbeats are received from a reader that is
already known about, and readerRemoved() for when the service stops
receiving regular heartbeats from a known reader. We print out a
simple message for each event, including the DiscoveryItem that is
passed to each method.

Lines 61-67 – The main function, which creates the NetworkDiscoveryTest object,
and catches and prints all exceptions generated therein.

Sample Output:
// Two readers are first discovered…
Reader Added:
Reader Name = Reader1
Reader Type = Alien RFID Tag Reader, Model: ALR-9800 (Four Antenna / Multi-
Protocol / 902-928 MHz)
Reader Address = 10.10.82.72
Reader MACAddress = 00:80:66:10:11:6A
Reader Version = 08.09.02.00b
Connection = Network
Command Port = 23
Lease Time = 30
Discovery Method = Automatic

Reader Added:
Reader Name = Reader2
Reader Type = Alien RFID Tag Reader, Model: ALR-9650 (One Antenna / Gen 2 /
902-928 MHz)
Reader Address = 10.10.82.233
Reader MACAddress = 0A:0B:0C:0D:0E:22
Reader Version = 08.06.26.00
Connection = Network
Command Port = 23
Lease Time = 30
Discovery Method = Automatic

// Now we see heartbeats from the same two readers again…
Reader Renewed:
Reader Name = Reader1

APPENDIX A ANNOTATED EXAMPLES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

35

Reader Type = Alien RFID Tag Reader, Model: ALR-9800 (Four Antenna / Multi-
Protocol / 902-928 MHz)
Reader Address = 10.10.82.72
Reader MACAddress = 00:80:66:10:11:6A
Reader Version = 08.09.02.00b
Connection = Network
Command Port = 23
Lease Time = 30
Discovery Method = Automatic

Reader Renewed:
Reader Name = Reader2
Reader Type = Alien RFID Tag Reader, Model: ALR-9650 (One Antenna / Gen 2 /
902-928 MHz)
Reader Address = 10.10.82.233
Reader MACAddress = 0A:0B:0C:0D:0E:22
Reader Version = 08.06.26.00
Connection = Network
Command Port = 23
Lease Time = 30
Discovery Method = Automatic

// Now the 1st reader has been disconnected – we still get heartbeats from the 2nd…
Reader Renewed:
Reader Name = Reader2
Reader Type = Alien RFID Tag Reader, Model: ALR-9650 (One Antenna / Gen 2 /
902-928 MHz)
Reader Address = 10.10.82.233
Reader MACAddress = 0A:0B:0C:0D:0E:22
Reader Version = 08.06.26.00
Connection = Network
Command Port = 23
Lease Time = 30
Discovery Method = Automatic

// Finally, we get the message that the 1st reader is gone…
Reader Removed:
Reader Name = Reader1
Reader Type = Alien RFID Tag Reader, Model: ALR-9800 (Four Antenna / Multi-
Protocol / 902-928 MHz)
Reader Address = 10.10.82.72
Reader MACAddress = 00:80:66:10:11:6A
Reader Version = 08.09.02.00b
Connection = Network
Command Port = 23
Lease Time = 30
Discovery Method = Automatic

ANNOTATED EXAMPLES APPENDIX A

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

36

MessageListenerTest.java
This example demonstrates how to run a service that accepts notification messages
pushed out by Alien readers on the network. It sets up the reader at COM1 in AutoMode,
with NotifyMode configured to send regular tag-read messages back to our application,
where the messages are printed out.

1 package com.alien.enterpriseRFID.examples;
2
3 import com.alien.enterpriseRFID.reader.*;
4 import com.alien.enterpriseRFID.tags.*;
5 import com.alien.enterpriseRFID.notify.*;
6
7 import java.net.InetAddress;
8
9 /**
10 * Starts up a message listener service, then opens a connection to a reader
11 * connected to COM1 and tells sets up autonomous mode. The reader sends a
12 * message to this application every second, whether it sees a tag or not.
13 * <p>
14 * The notifications are passed to the messageReceived method, where the tag
15 * list is then displayed.
16 * <p>
17 * This application will run for 10 seconds, and then it will reconnect to the
18 * reader and turn off AutoMode and NotifyMode. If you don't exit this
19 * application nicely, say with a ctrl-C or similar method, the reader is
20 * still reading and notifying, even though the application has exited.
21 * <p>
22 * The solution to this is to log onto the reader and turn AutoMode off.
23 *
24 * @version 1.3 July 2008
25 * @author David Krull
26 */
27 public class MessageListenerTest implements MessageListener {
28
29 /**
30 * Constructor.
31 */
32 public MessageListenerTest() throws Exception {
33 // Set up the message listener service
34 MessageListenerService service = new MessageListenerService(4000);
35 service.setMessageListener(this);
36 service.startService();
37 System.out.println("Message Listener has Started");
38
39 // Instantiate a new reader object, and open a connection to it on COM1
40 AlienClass1Reader reader = new AlienClass1Reader("COM1");
41 reader.open();
42 System.out.println("Configuring Reader");
43
44 // Set up Notification. Use this host's IPAddress, and the port number
45 // that the service is listening on.
46 // getHostAddress() may find a wrong (wireless) Ethernet interface, so you
47 // may need to substitute your computers IP address manually.
48 String myIP = InetAddress.getLocalHost().getHostAddress();
49 reader.setNotifyAddress(myIP, service.getListenerPort());
50
51 // Make sure service can decode it.
52 reader.setNotifyFormat(AlienClass1Reader.XML_FORMAT);
53 // Notify whether there's a tag or not
54 reader.setNotifyTrigger("TrueFalse");
55 reader.setNotifyMode(AlienClass1Reader.ON);
56
57 // Set up AutoMode
58 reader.autoModeReset();
59 reader.setAutoStopTimer(1000); // Read for 1 second

APPENDIX A ANNOTATED EXAMPLES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

37

60 reader.setAutoMode(AlienClass1Reader.ON);
61
62 // Close the connection and spin while messages arrive
63 reader.close();
64 long runTime = 10000; // milliseconds
65 long startTime = System.currentTimeMillis();
66 do {
67 Thread.sleep(1000);
68 } while(service.isRunning()
69 && (System.currentTimeMillis()-startTime) < runTime);
70
71 // Reconnect to the reader and turn off AutoMode and TagStreamMode.
72 System.out.println("\nResetting Reader");
73 reader.open();
74 reader.autoModeReset();
75 reader.setNotifyMode(AlienClass1Reader.OFF);
76 reader.close();
77 }
78
79
80 /**
81 * A single Message has been received from a Reader.
82 */
83 public void messageReceived(Message message) {
84 System.out.println("\nMessage Received:");
85 if (message.getTagCount() == 0) {
86 System.out.println("(No Tags)");
87 } else {
88 for (int i=0; i<message.getTagCount(); i++) {
89 Tag tag = message.getTag(i);
90 System.out.println(tag.toLongString());
91 }
92 }
93 }
94
95
96 /**
97 * Main.
98 */
99 public static final void main(String args[]){
100 try {
101 new MessageListenerTest();
102 } catch (Exception e) {
103 System.out.println("Error:" + e.toString());
104 }
105 }
106
107 } // end of class MessageListenerTest

Lines 1-7 – Define the package for this example, and import the required

"discovery", "tags", and "notify" packages from the library. We also
need to deduce out own IP address, so we import java.net.InetAddress
too.

Lines 27, 32 – Define the class and constructor for this example. This application
implements the MessageListener interface for receiving reader
notification events from the MessageListenerService.

Line 34 – Instantiate a new MessageListenerService object. We tell it which port
(4000) to listen on. The reader needs to know out IP address and this
port number in order to deliver notification messages.

Line 35 – Tell the service to notify our app (which implements the
MessageListener interface) when reader notifications are received.

Line 36 – Start the listener service. It runs on its own now, and will use callbacks
to let us know when data is received from a reader.

ANNOTATED EXAMPLES APPENDIX A

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

38

Lines 40-41 – Open a connection to the reader at COM1, so that we can configure it
to send us messages.

Line 48 – Get out computer's IP address. If you have more than one Ethernet
interface (wireless, or VPN software, for instance) this method may get
the IP address from the wrong interface. You may need to hardcode
your computer's IP address here.

Line 49 – Set up the reader's NotifyAddress property to be of the format:
<myIPAddress>:<listenerPort>.

Lines 52-55 – Set the format of the reader's notification messages to XML, tell the
reader to notify us no matter what happens, and turn on NotifyMode.

Lines 58-63 – Reset the reader's AutoMode settings to the defaults, turn AutoMode
on, and disconnect from the reader.

Lines 64-69 – Set up a timer to wait 10 seconds, or until the MessageListenerService
stops. The listener service will run on its own, waiting for readers to
connect to it's port. It will then read the data from the reader, decode
any tag or I/O data there, and hand you a Message object via the
messageReceived() method.

Lines 72-76 – After the expiration of the timer, we connect back to the reader to turn
AutoMode and NotifyMode off. Otherwise, the reader will continue to
run even after our app has exited.

Lines 82-93 – Implement the MessageListener interface, consisting of a single
method, messageReceived(). The MessageListenerService passes us
a Message object, which contains information about the reader as well
as a TagList (and IOList, in case the notification contained I/O events
as well). We print out a simple message the method is called, including
the tag data.

Lines 99-105 – The main function, which creates the MessageListenerTest object, and
catches and prints all exceptions generated therein.

Sample Output:
Message Listener has Started
Configuring Reader

Message Received:
Tag=E200 3411 B802 0111 0604 7639 Disc=Wed Sep 03 10:01:08 PDT 2008 Last=Wed Sep
03 10:01:09 PDT 2008 Count=6 Ant=0 Proto=2 v=0.0 RSSI=0.0 Dir=0
Tag=ABCD 3412 DF00 0982 3000 5079 Disc=Wed Sep 03 10:01:08 PDT 2008 Last=Wed Sep
03 10:01:09 PDT 2008 Count=6 Ant=0 Proto=2 v=0.0 RSSI=0.0 Dir=0

Message Received:
Tag=E200 3411 B802 0111 0604 7639 Disc=Wed Sep 03 10:01:09 PDT 2008 Last=Wed Sep
03 10:01:10 PDT 2008 Count=6 Ant=0 Proto=2 v=0.0 RSSI=0.0 Dir=0
Tag=ABCD 3412 DF00 0982 3000 5079 Disc=Wed Sep 03 10:01:09 PDT 2008 Last=Wed Sep
03 10:01:10 PDT 2008 Count=6 Ant=0 Proto=2 v=0.0 RSSI=0.0 Dir=0

// …10 of these messages were received, once per second…

Message Received:
Tag=E200 3411 B802 0111 0604 7639 Disc=Wed Sep 03 10:01:16 PDT 2008 Last=Wed Sep
03 10:01:17 PDT 2008 Count=6 Ant=0 Proto=2 v=0.0 RSSI=0.0 Dir=0
Tag=ABCD 3412 DF00 0982 3000 5079 Disc=Wed Sep 03 10:01:16 PDT 2008 Last=Wed Sep
03 10:01:17 PDT 2008 Count=6 Ant=0 Proto=2 v=0.0 RSSI=0.0 Dir=0
Tag= Disc=Wed Sep 03 10:01:16 PDT 2008 Last=Wed Sep 03 10:01:17 PDT 2008
Count=6 Ant=0 Proto=2 v=0.0 RSSI=0.0 Dir=0

Resetting Reader

APPENDIX A ANNOTATED EXAMPLES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

39

TagStreamTest.java
This example demonstrates how to use a MessageListenerService to receive and deliver
to your application streamed data from a reader. Readers can stream data to you
everytime a tag is read (TagStream) or everytime an external I/O changes (IOStream).
This is just like the MessageListenerTest.java example, only we configure
TagStreamMode on the reader instead of NotifyMode. The MessageListenerService
works the same.

1 package com.alien.enterpriseRFID.examples;
2
3 import com.alien.enterpriseRFID.reader.*;
4 import com.alien.enterpriseRFID.tags.*;
5 import com.alien.enterpriseRFID.notify.*;
6
7 import java.net.InetAddress;
8
9 /**
10 * Starts up a message listener service, then opens a connection to a reader
11 * connected to COM1 and configures it to go into autonomous mode and stream
12 * tag reads back to this application.
13 * <p>
14 * The TagStream events are delivered to the messageReceived method, where the
15 * tag list is then displayed.
16 * <p>
17 * Only enterprise class readers (ALR-x800/9900/9650) support TagStreaming,
18 * and they must have a firmware revision of at least 07.01.31.
19 *
20 * One thing to note: This application will run for 10 seconds, and then
21 * it will reconnect to the reader and turn off AutoMode and TagStreamMode.
22 * If you don't exit this application nicely, say with a ctrl-C or similar
23 * method, the reader is still reading and streaming tags, even though the
24 * application has exited.
25 * <p>
26 * The solution to this is to log onto the reader and turn AutoMode off.
27 *
28 * @version 1.0 July 2008
29 * @author David Krull
30 */
31 public class TagStreamTest implements MessageListener {
32
33 /**
34 * Constructor.
35 */
36 public TagStreamTest() throws Exception {
37 // Set up the message listener service.
38 // It handles streamed data as well as notifications.
39 MessageListenerService service = new MessageListenerService(4000);
40 service.setMessageListener(this);
41 service.startService();
42 System.out.println("Message Listener has Started");
43
44 // Instantiate a new reader object, and open a connection to it on COM1
45 AlienClass1Reader reader = new AlienClass1Reader("COM1");
46 reader.open();
47 System.out.println("Configuring Reader");
48
49 // Set up TagStream. Use this host's IPAddress, and the port number that
50 // the service is listening on.
51 // getHostAddress() may find a wrong (wireless) Ethernet interface,
52 // so you may need to substitute your computers IP address manually.
53 String myIP = InetAddress.getLocalHost().getHostAddress();
54 reader.setTagStreamAddress(myIP, service.getListenerPort());
55 // Make sure service can decode it.
56 reader.setTagStreamFormat(AlienClass1Reader.TEXT_FORMAT);
57 reader.setTagStreamMode(AlienClass1Reader.ON);

ANNOTATED EXAMPLES APPENDIX A

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

40

58
59 // Set up AutoMode - use standard settings.
60 reader.autoModeReset();
61 reader.setAutoMode(AlienClass1Reader.ON);
62
63 // Close the connection and spin while messages arrive
64 reader.close();
65 long runTime = 10000; // milliseconds
66 long startTime = System.currentTimeMillis();
67 do {
68 Thread.sleep(1000);
69 } while(service.isRunning()
70 && (System.currentTimeMillis()-startTime) < runTime);
71
72 // Reconnect to the reader and turn off AutoMode and TagStreamMode.
73 System.out.println("\nResetting Reader");
74 reader.open();
75 reader.autoModeReset();
76 reader.setTagStreamMode(AlienClass1Reader.OFF);
77 reader.close();
78 }
79
80
81 /**
82 * A single Message has been received from a Reader.
83 */
84 public void messageReceived(Message message){
85 System.out.println("\nStream Data Received:");
86 if (message.getTagCount() == 0) {
87 System.out.println("(No Tags)");
88 } else {
89 for (int i=0; i<message.getTagCount(); i++) {
90 Tag tag = message.getTag(i);
91 System.out.println(tag.toLongString());
92 }
93 }
94 }
95
96
97 /**
98 * Main.
99 */
100 public static final void main(String args[]){
101 try {
102 new TagStreamTest();
103 } catch (Exception e) {
104 System.out.println("Error:" + e.toString());
105 }
106 }
107
108 } // End of class TagStreamTest

Lines 1-7 – Define the package for this example, and import the required

"discovery", "tags", and "notify" packages from the library. We also
need to deduce out own IP address, so we import java.net.InetAddress
too.

Lines 31, 36 – Define the class and constructor for this example. This application
implements the MessageListener interface for receiving reader
notification events from the MessageListenerService.

Line 39 – Instantiate a new MessageListenerService object. We tell it which port
(4000) to listen on. The reader needs to know out IP address and this
port number in order to deliver notification messages.

Line 40 – Tell the service to notify our app (which implements the
MessageListener interface) when reader notifications are received.

APPENDIX A ANNOTATED EXAMPLES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

41

Line 41 – Start the listener service. It runs on its own now, and will use callbacks
to let us know when data is received from a reader.

Lines 45-46 – Open a connection to the reader at COM1, so that we can configure it
to send us messages.

Line 53 – Get out computer's IP address. If you have more than one Ethernet
interface (wireless, or VPN software, for instance) this method may get
the IP address from the wrong interface. You may need to hardcode
your computer's IP address here.

Line 54 – Set up the reader's TagStreamAddress property to be of the format:
<myAddress>:<listenerPort>.

Lines 56-57 – Set the format of the reader's TagStream output to Text, and turn on
TagStreamMode.

Lines 60-64 – Reset the reader's AutoMode settings to the defaults, turn AutoMode
on, and disconnect from the reader.

Lines 65-70 – Set up a timer to wait 10 seconds, or until the MessageListenerService
stops. The listener service will run on its own, waiting for readers to
connect to it's port. It will then read the data streamed from the reader,
decode any tag or I/O data there, and hand you a Message object via
the messageReceived() method.

Lines 73-77 – After the expiration of the timer, we connect back to the reader to turn
AutoMode and TagStreamMode off. Otherwise, the reader will
continue to run even after our app has exited.

Lines 84-94 – Implement the MessageListener interface, consisting of a single
method, messageReceived(). The MessageListenerService passes us
a Message object, which contains information about the reader as well
as a TagList (and IOList, in case the notification contained I/O events
as well). We print out a simple message the method is called, including
the tag data.

Lines 100-106 – The main function, which creates the TagStreamTest object, and
catches and prints all exceptions generated therein.

Sample Output:
Message Listener has Started
Configuring Reader

Stream Data Received:
Tag=E200 3411 B802 0111 0604 7639 Disc=Wed Sep 03 10:27:46 PDT 2008 Last=Wed Sep
03 10:27:46 PDT 2008 Count=1 Ant=0 Proto=2 v=0.0 RSSI=0.0 Dir=0
Tag=ABCD 3412 DF00 0982 3000 5079 Disc=Wed Sep 03 10:27:46 PDT 2008 Last=Wed Sep
03 10:27:46 PDT 2008 Count=1 Ant=0 Proto=2 v=0.0 RSSI=0.0 Dir=0

Stream Data Received:
Tag=E200 3411 B802 0111 0604 7639 Disc=Wed Sep 03 10:27:46 PDT 2008 Last=Wed Sep
03 10:27:46 PDT 2008 Count=1 Ant=0 Proto=2 v=0.0 RSSI=0.0 Dir=0
Tag=ABCD 3412 DF00 0982 3000 5079 Disc=Wed Sep 03 10:27:46 PDT 2008 Last=Wed Sep
03 10:27:46 PDT 2008 Count=1 Ant=0 Proto=2 v=0.0 RSSI=0.0 Dir=0

// …I received about 50 of these messages in the 10-second period…

Stream Data Received:
Tag=E200 3411 B802 0111 0604 7639 Disc=Wed Sep 03 10:27:56 PDT 2008 Last=Wed Sep
03 10:27:56 PDT 2008 Count=1 Ant=0 Proto=2 v=0.0 RSSI=0.0 Dir=0
Tag=ABCD 3412 DF00 0982 3000 5079 Disc=Wed Sep 03 10:27:56 PDT 2008 Last=Wed Sep
03 10:27:56 PDT 2008 Count=1 Ant=0 Proto=2 v=0.0 RSSI=0.0 Dir=0

Resetting Reader

ANNOTATED EXAMPLES APPENDIX A

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

42

IOStreamTest.java
This example demonstrates how to use a MessageListenerService to receive and deliver
to your application streamed data from a reader. Readers can stream data to you
everytime a tag is read (TagStream) or everytime an external I/O changes (IOStream).
This is just like the TagStreamTest.java example, only we configure IOStreamMode on
the reader instead of TagStreamMode. The AutoMode setup is a bit mode complicated,
since we are using AutoMode to generate many I/O events by setting the
AutoWaitOutput, AutoWorkOutput, etc. to different values. The MessageListenerService
works the same.

1 package com.alien.enterpriseRFID.examples;
2
3 import java.net.InetAddress;
4
5 import com.alien.enterpriseRFID.externalio.ExternalIO;
6 import com.alien.enterpriseRFID.notify.Message;
7 import com.alien.enterpriseRFID.notify.MessageListener;
8 import com.alien.enterpriseRFID.notify.MessageListenerService;
9 import com.alien.enterpriseRFID.reader.AlienClass1Reader;
10
11 /**
12 * Starts up a message listener service, then opens a connection to a reader
13 * connected to COM1 and configures it to go into autonomous mode with various
14 * ExternalOutput settings for each AutoMode state. This generates many I/O
15 * events, which are streamed back to this application.
16 * <p>
17 * The IOStream events are delivered to the messageReceived method, where they
18 * are displayed.
19 * <p>
20 * Only enterprise class readers (ALR-x800/9900/9650) support IOStreaming, and
21 * they must have a firmware revision of at least 07.01.31.
22 *
23 * This application will run for 10 seconds, and then it will reconnect to the
24 * reader and turn off AutoMode and IOStreamMode. If you don't exit this
25 * application nicely, say with a ctrl-C or similar method, the reader is
26 * still reading and streaming tags, even though the application has exited.
27 * <p>
28 * The solution to this is to log onto the reader and turn AutoMode off.
29 *
30 * @version 1.0 July 2008
31 * @author David Krull
32 */
33 public class IOStreamTest implements MessageListener {
34
35 /**
36 * Constructor.
37 */
38 public IOStreamTest() throws Exception {
39 // Set up the message listener service.
40 // It handles streamed data as well as notifications.
41 MessageListenerService service = new MessageListenerService(4000);
42 service.setMessageListener(this);
43 service.startService();
44 System.out.println("Message Listener has Started");
45
46 // Instantiate a new reader object, and open a connection to it on COM1
47 AlienClass1Reader reader = new AlienClass1Reader("COM1");
48 reader.open();
49 System.out.println("Configuring Reader");
50
51 // Set up IOStream. Use this host's IPAddress, and the port number that
52 // the service is listening on.
53 // getHostAddress() may find a wrong (wireless) Ethernet interface, so you
54 // may need to substitute your computers IP address manually.

APPENDIX A ANNOTATED EXAMPLES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

43

55 String myIP = InetAddress.getLocalHost().getHostAddress();
56 reader.setIOStreamAddress(myIP, service.getListenerPort());
57 // Make sure service can decode it.
58 reader.setIOStreamFormat(AlienClass1Reader.TEXT_FORMAT);
59 reader.setIOStreamMode(AlienClass1Reader.ON);
60
61 // Set up AutoMode - make it blink various outputs.
62 reader.autoModeReset();
63 reader.setAutoWaitOutput(1); // output #1
64 reader.setAutoWorkOutput(2); // output #2
65 reader.setAutoTrueOutput(3); // outputs #1,2
66 reader.setAutoFalseOutput(0); // no outputs
67 reader.setAutoMode(AlienClass1Reader.ON);
68
69 // Close the connection and spin while messages arrive
70 reader.close();
71 long runTime = 10000; // milliseconds
72 long startTime = System.currentTimeMillis();
73 do {
74 Thread.sleep(1000);
75 } while(service.isRunning()
76 && (System.currentTimeMillis()-startTime) < runTime);
77
78 // Reconnect to the reader and turn off AutoMode and TagStreamMode.
79 System.out.println("\nResetting Reader");
80 reader.open();
81 reader.autoModeReset();
82 reader.setIOStreamMode(AlienClass1Reader.OFF);
83 reader.close();
84 }
85
86
87 /**
88 * A single Message has been received from a Reader.
89 */
90 public void messageReceived(Message message){
91 System.out.println("\nStream Data Received:");
92 if (message.getIOCount() == 0) {
93 System.out.println("(No IOs)");
94 } else {
95 for (int i=0; i<message.getIOCount(); i++) {
96 ExternalIO io = message.getIO(i);
97 System.out.println(io.toLongString());
98 }
99 }
100 }
101
102
103 /**
104 * Main.
105 */
106 public static final void main(String args[]){
107 try {
108 new IOStreamTest();
109 } catch (Exception e) {
110 System.out.println("Error:" + e.toString());
111 }
112 }
113
114 } // End of class IOStreamTest

Lines 1-7 – Define the package for this example, and import the required

"discovery", "tags", and "notify" packages from the library. We also
need to deduce out own IP address, so we import java.net.InetAddress
too.

Lines 33, 38 – Define the class and constructor for this example. This application
implements the MessageListener interface for receiving reader
notification events from the MessageListenerService.

ANNOTATED EXAMPLES APPENDIX A

 JAVA DEVELOPER’S GUIDE
 DOC. CONTROL # 8101025-000 REV G

44

Line 41 – Instantiate a new MessageListenerService object. We tell it which port
(4000) to listen on. The reader needs to know out IP address and this
port number in order to deliver notification messages.

Line 42 – Tell the service to notify our app (which implements the
MessageListener interface) when reader notifications are received.

Line 43 – Start the listener service. It runs on its own now, and will use callbacks
to let us know when data is received from a reader.

Lines 47-48 – Open a connection to the reader at COM1, so that we can configure it
to send us messages.

Line 55 – Get out computer's IP address. If you have more than one Ethernet
interface (wireless, or VPN software, for instance) this method may get
the IP address from the wrong interface. You may need to hardcode
your computer's IP address here.

Line 56 – Set up the reader's IOStreamAddress property to be of the format:
<myAddress>:<listenerPort>.

Lines 58-59 – Set the format of the reader's IOStream output to Text, and turn on
IOStreamMode.

Lines 62-67 – Setup the reader's AutoMode parameters and AutoMode on. We set
various output values for AutoWaitOutput, AutoWorkOutput
AutoTrueOutput and AutoFalseOutput so that as AutoMode runs if
generates many I/O events. We aren't concerned with tag data in this
example, but the same MessageListenerService can be used for
Notifications, TagStream, and IOStream.

Lines 71-76 – Set up a timer to wait 10 seconds, or until the MessageListenerService
stops. The listener service will run on its own, waiting for readers to
connect to it's port. It will then read the data streamed from the reader,
decode any tag or I/O data there, and hand you a Message object via
the messageReceived() method.

Lines 79-83 – After the expiration of the timer, we connect back to the reader to turn
AutoMode and IOStreamMode off. Otherwise, the reader will continue
to run even after our app has exited.

Lines 90-100 – Implement the MessageListener interface, consisting of a single
method, messageReceived(). The MessageListenerService passes us
a Message object, which contains information about the reader as well
as an IOList (and TagList, in case the notification/stream contained
Tag events as well). We print out a simple message when the method
is called, followed by all of the I/O events.

Lines 106-112 – The main function, which creates the TagStreamTest object, and
catches and prints all exceptions generated therein.

Sample Output:
Message Listener has Started
Configuring Reader

Stream Data Received:
DO, Value=1, Time=2008/09/03 11:02:34.792, HostTime=2008/09/03 12:02:34.928
DO, Value=2, Time=2008/09/03 11:02:34.792, HostTime=2008/09/03 12:02:34.928

Stream Data Received:
DO, Value=0, Time=2008/09/03 11:02:35.790, HostTime=2008/09/03 12:02:35.913
DO, Value=1, Time=2008/09/03 11:02:35.790, HostTime=2008/09/03 12:02:35.913
DO, Value=2, Time=2008/09/03 11:02:35.791, HostTime=2008/09/03 12:02:35.913

Stream Data Received:
DO, Value=0, Time=2008/09/03 11:02:36.820, HostTime=2008/09/03 12:02:36.975

APPENDIX A ANNOTATED EXAMPLES

JAVA DEVELOPER’S GUIDE
DOC. CONTROL # 8101025-000 REV G

45

DO, Value=1, Time=2008/09/03 11:02:36.820, HostTime=2008/09/03 12:02:36.975
DO, Value=2, Time=2008/09/03 11:02:36.820, HostTime=2008/09/03 12:02:36.975

// …10 of these messages were received, once per second…

Stream Data Received:
DO, Value=0, Time=2008/09/03 11:02:44.411, HostTime=2008/09/03 12:02:44.551
DO, Value=1, Time=2008/09/03 11:02:44.411, HostTime=2008/09/03 12:02:44.551
DO, Value=2, Time=2008/09/03 11:02:44.411, HostTime=2008/09/03 12:02:44.551

Resetting Reader

