ALIEN TECHNOLOGY®

o

-.NET API
DEVELOPER'S GUIDE

April 2009

All Full

——
e ———
Featured

Readers A l_ I E N@

Legal Notices
Copyright © 2008 Alien Technology Corporation. All rights reserved.

Alien Technology Corporation has intellectual property rights relating to technology
embodied in the products described in this document, including without limitation certain
patents or patent pending applications in the U.S. or other countries.

This document and the products to which it pertains are distributed under licenses
restricting their use, copying, distribution and decompilation. No part of this product
documentation may be reproduced in any form or by any means without the prior written
consent of Alien Technology Corporation and its licensors, if any. Third party software is
copyrighted and licensed from Licensors. Alien, Alien Technology, the Alien logo,
Nanoblock, Fluidic Self Assembly, FSA, Gen2Ready, Squiggle, RFID Gateway,
Nanoscanner and other graphics, logos, and service names used in this document are
trademarks of Alien Technology Corporation in the U.S. and other countries. All other
trademarks are the property of their respective owners. U.S. Government approval
required when exporting the product described in this documentation.

Federal Acquisitions: Commercial Software -- Government Users Subject to Standard
License Terms and Conditions. U.S. Government: If this Software is being acquired by or
on behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government's rights in the Software and
accompanying documentation shall be only as set forth in this license; this is in
accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense
(DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARANTEES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGMENT ARE HEREBY DISCLAIMED, EXCEPT TO THE EXTENT THAT
SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

TABLE OF CONTENTS

Alien Technology®

.NET Developer’s Guide (v.2.3)
All Full Featured Readers

Table of Contents

CHAPTER 1 INTRODUCTION ...ttt ime s s sms e s ms e s ms e s mn e s s s smme s smme s s smmn e s s smmn e s e smmnn s 1
0 Lo | =Y o T S 1
OVBIVIBW .. ettt ettt oo oottt ettt e e e e e e e ket eeeeeeeeaaaaneeeeeeeeeeaansseeeeeaaeeesaanssseneeeaeeeaaannsnsneeaaeesannns 1
1S3 = 1= 4o) o S 4

CHAPTER 2 SUPPORTING DATA TYPEScccceeiicccerircee s e e s sssms e s s sms e s s sms e sssssmse s s ssme s sssssmesssssnnnnns 5
a1 oo [ex (o o HU PO PP PPP TR PP 5
R LCT R CET= Lo L= 10 o T O = TSR 6
THE TAGINTO CIASS ...ttt e e ettt e e e e e et ee e e e e eseasasbeeeeeaeeesesastsaeeeeaeeseanssssnneeeaeas 7
The NOUTYINTO CIASSueiiiiiiiie ettt e e e e e e et e e e e s e st e e e e aeeesesasteaeeeeaeeaeansnrrraeeaaens 8
B CoR 1= 0 L0) o T2 =TSSR 9
The UpGradelnfo Class..........ooo ittt abb e e e e e e e 10

CHAPTER 3 THE CLSREADERMONITOR CLASS. ..ottt issre s sssre s ssss s sssssns s s ssns s ssssms s s ssssnes 11
T 1o o [T o T o SR 11
Serial Discovery and MONITOMINGeoii e e e e e snnnee s 13
Network Discovery and MONITOMINGuiiiiiiiie ettt e e sb e e s sbeeee e 15

CHAPTER 4 THE CLSREADER CLASS........coiiiictirissresissssreessssssesssssssessssssssssssssseessssssesssssnsesssssnsesssssnes 17
Tl 1oTo [e i o] o HU PO PPPPPR PP 17
Instancing a Reader from the clsReaderMonitor Discovery Class........ccccccovvviviiiiiieeeciccieiee e 17
Instancing a Reader Directly On a Serial CoONNECHIONoiiiiiiiiiiiiiiiee e 17
Instancing a Reader Directly 0n the NEetWOIKouiiiiiiiiiiiiiiiiieii e eeeeenenesenenrnne 18
Opening and Closing Connection t0 @ REAUETcooiiiiiiiiiiieii e e e 18
Communication With @ REAAEToo et e e e e e e e e e e e e anne 20

CHAPTER 5 TAG WORKS ...ttt issss s ssss s s s s ssn s s s s s s ssame s s amn e s s mn e s s e mn e s snsmnasennnnns 22
T 1o T [T 4o T o PR 22
A== To [T To T =T [PO UUPPPROPTPPR 22
el [r=T a0l a1 aTe T 1= o S PP UUPPPR PP 24

CHAPTER 6 ALIEN NOTIFICATIONS AND STREAMINGccociiiiirrire e s 28
Tl 1o o [e i o o HU PO PPPPPR PP 28
Retrieve Notifications SYNCAIrONOUSIYcooiiiiiiie e e e e e e e e e e 29
ASYNChronNous NOLfICAtIONScoiiiiiiicic e e e e e e e e e e e e e e e s nnreees 29

CHAPTER 7 READER FIRMWARE UPGRADE.............coiiiriiircereessssnessssssse s sssssse e sssssnsessssnsesssssmsessnssnes 33

®

CHAPTER 8 ALIEN INTELLIGENT TAG RADAR ... s sns s s s mn e ssmn e s s 34

.NET DEVELOPER’S GUIDE
Doc. CoNTROL #8101948-000 Rev. H 1

TABLE OF CONTENTS

Table of Figures

Figure 1: Alien RFID Library class diagram.........c.ccceeuerieriienieeiesiesiesiteiteieeeteeeaesteesseeseesessaesseesseesseensesnsesssenseensens 3
Figure 2: Alien RFID Library €nNUMETAtIONScccuieicueeriieriieeniiesieenteesteesreesseessseesseessseessseessseesssesssseesssesssseesssesnsses 5
Figure 3: ReaderInfO ClasSc.iiecuieiiiiiiiieiiie ettt ettt ettt e st e st e sabe e st e e ssbeessbaessbeensseessseenssaessseensseenssesnsss 6
FIgure 4: Class TaBINTO ...cccuieiiiiiiieiiiecieeeee ettt ettt et e st e s b e e sttt esabe e st e e esbeessseesssaensseessseenssaessseensseensseensses 7
Figure 5: Class NOTEYINTOcc.viiiiieiiieciiecite ettt ettt ettt s bt e st e sabeestbeessaeessbeessbeessseessseenssaessseensseenssesnsss 8
Figure 6: Class ALENTOINTOcccuiiiiieiiieciie ettt et e e st e e st e e sebe e st e e ssaeessseessbaeasseessseenssaessseessseenssesnsses 9
Figure 7: Class UPGradeInfi.........ccveruiiiiiiiiiierieii ettt ettt sttt ettt e et e ssaessae st e enseenseensessnesseesseanseensenns 10
Figure 8: Example of Subscribing to clsReaderMonitor events in CH..........cccvevieriieiiieieniecieeeie e 11
Figure 9: Example implementation of the clsReaderMonitor.ReaderAdded eventc..ccceeveeieninininincnceiennenne. 12
Figure 10: Updating ListBox IbReaders with received data...........cccveviiroiiiierienieiieie et 12
Figure 11: Manually checking presence of Alien readers 0n COm POITSccueeruierireeieeierienienieesreeee e seresseeseeeneens 13
Figure 12: Getting current reader 1ist 0N COm POTLSeeuveriieriieriieieeieetestesteeieeteetesaessaesseeseesessessnesseesseansesseans 14
Figure 13: Clearing the current list of serial-connected readers, GUI, and the collection variablecc.cccueeneeee 14
Figure 14: Example application # 5 1N @CHOMNS....c.uiiiuieiiieiieeiiieste et este et esteesieeesae e taeesseeesseensseesseenssessseenseesnes 15
Figure 15: Monitoring Alien Readers both on network and serial CONNECItONS.........eevcveeriierieeriieiie e ecie e 16
Figure 16: Creating an instance of the reader from the Reader Monitoringccceceeeerienieniennenneie e 17
Figure 17: Initializing reader for serial COMMUNICAtIONcouiiiiiiriiiiiiiiiiieriee ettt 17
Figure 18: Initializing reader for network commuNICationcooiiriiiiiiiirienieeee e e 18
Figure 19: Opening connection t0 the TEAACT........c..ecuieciieieeieeeeieeie ettt sttt e e eseeaesnaesseesseenseenseens 18
Figure 20: Logging to the NETWOTKc.iiiiiiiiiieii ettt ettt eea et e st e e enseensessaesseesseenseensenns 19
Figure 21: Comand/Response communication of Alien reader with a mobile device.ccceceevieninincnininceienenne. 20
Figure 22: Synchronous and asynchronous reader TESPONSESeevverrververeierrieriieieeteeaesseesseesseesesssesnesseesseessessseans 21
Figure 23: Obtaining reader internal Tag [iST...........cciecuieierieiieiieie ettt ettt eeaesee st e e e eseeaesnnesseesseenseenseans 22
Figure 24: Tag list returned in Text format (default)..........cccoeviiiriiiiiiiiiiee e 22
Figure 25: Tag list returned in XIML fOrMAt.......ccc.eiiiuiiiiiiiiieiieecie ettt sreeseeesae e aeeseaeetaeessaeessaeesaseesseensneenns 23
Figure 26: Parsing obtained Ta LIStc.cevuiiiiiiiiiieiieeiitesie ettt ettt st e e eesaae e taeesaeeesaeenseeesseensseesseensnennes 23
Figure 27: EXO — Tag LISt TUNMINE . ..c.veitiiiiitieitieti ettt ettt ettt st st e st e bt et eat e ebtesbee s b e e bt embeemeesaeesbeenaeenteeneeans 24
Figure 28: Examplel] - Programming Tags TUNNINEcceeiieriiiriiiiiiieiieniceie ettt sttt st esae et e e 26
Figure 29: Members Of the CALIENSEIVET ClaSS.......cccuiiiiieiiieiiierie et eete ettt ste et e sae e tteeseeeetaeessaeessseesssessseessnennes 28
Figure 30: Notifications EXample APPLICALIONccuievieieeiieriieiieieeie st te st et eteeteeeaestaesseeseesesnaessnesseesseenseensenns 30
Figure 31: Ex9 — Data Streaming on Network sample appliCation..........ccocverierieriiesieeiieniesieseesie e see e seeeseeeeeens 31
Figure 32: Mobile device receives data from reader and transfers them to a desktop applicationcccccvererennenne 32
Figure 33: Firmware Upgrading with the Ex10 sample appliCationccccecuerueierinineneninieienenene e 33
Figure 34: Demonstrating Alien Intelligent Tag Radar® FRATUTES. .ottt 34

iii

.NET DEVELOPER’S GUIDE
Doc. CoNTROL # 8101948-000 Rev. H

CHAPTER 1

INTRODUCTION

CHAPTER 1
Introduction

The .NET Developers’ Guide provides basic instructions for programmatically

controlling Alien® RFID readers using Microsoft .NET Framework v.2.0. Alien
provides a number of assemblies (for both full and Compact Framework) as class
libraries, custom user controls and sample applications that are included

withinnnn Alien® Developer's Kit.

Audience

For the purposes of this book, we assume the readers of this document:

e Have minimal previous knowledge of radio-frequency identification
technology,

¢ Are familiar with the Alien Reader ASCII Protocol (see Reader Interface
Guide, Doc# 8101938-000),

e Are experienced in .NET software development.

Overview

The Alien RFID Reader can be programmatically controlled using a number of
systems and languages. This document focuses on controlling the reader using
the Alien .NET API supplied with the developers’ kit. Terms Alien .NET Library
(Library) and Alien .NET API have been used in this document interchangeable.

Class library for full .NET Framework is called AlienRFID2.dll and for the
Compact Framework — AlienMobileAPIl.dII.

NOTE: Not all features of the full library are supported by the mobile API
(e.g.: Firmware upgrade is not supported by mobile build.)

Alien Technology provides a number of example applications with their source
code developed in .NET environment (C# and VB.NET) as Alien .NET SDK
demonstrating how to use features of Alien readers and software. There is also
another set of sample applications developed with the Visual Basic 6
environment for demonstrating how to use the COM interface of the
AlienRFID2.dll described by the AlienRFID2.tlb type-library.

The class library contained within Alien .NET API provides type structures and
classes that constitute discrete functional groups for controlling various aspects
of the reader:

The class clsReader is the main class for interaction with an Alien reader. It
reflects the Alien Reader ASCII Interface described in the Reader Interface
Guide, doc #: 8101938-000 and has additional features related to a separate
reader device.

.NET DEVELOPER’S GUIDE

Doc. CoNTROL #8101948-000 Rev. H 1

INTRODUCTION

CHAPTER 1

Library provides Discovery and Monitoring features — Classes for discovering the
location of readers connected via serial ports or networks as well as for
monitoring tags’ status read by a reader.

Library includes Storage Types — Data types for handling data about readers and
RFID tags. The Alien RFID classes clsReaderMonitor and clsReader use these
types to pass information to functions and user applications about the state of
readers connected to the system.

Though, the Alien .NET API had been started as a functional mirror to the
AlienRFIDLibrary.dll ActiveX component that had been used by developers with
Visual Basic 6 (VB6) since 2003, it has overgrew it with time. The .NET Library
doesn’t use MSComm control that was so popular for VB6 developers but
unfortunately has some limitations and license restrictions for redistribution.
Instead, the native .NET classes have been used as well as low level Win32 API
calls.

The following diagram demonstrates high-level structure of the Alien .NET API:

.NET DEVELOPER’S GUIDE
Doc. ConTROL # 8101948-000 Rev.H

CHAPTER 1 INTRODUCTION
- & . P B
IAlienReaderEvents % |) ReaderCOM () IDispasable {.mmuuu %]
Inkafaca i e, Fo= E i Chss
IReaderCOM £ clsReader %] CBaseReader]
4‘ Intafaa Chss AD{ Chss
ki - CBaseRaade: ke
S
- - Te——————— e e — - ——————— -
TAlienMonitoringEvents g] o | AlienLog g':
Inbartaca « P ; | Skatic Class i
IR eaderMoniberCOM il clEReaderMonitor % 1 I
Tnbartara Chss by -
L b
ComInterface [%]
Fa . Ermam
IAlienServerEvents]] 0
Inkafaca r = F= .
IAlienServerCOM |2 CAlienServer %
Intafaa Chss
RFIDProtocal =
e s Eram
F ™
IAlienDataDirectorEvents [] o
1 = -
" LatienDataDirectarcom £ AlienDataDirectar % eG2Bank 1:]]
Intafaca Chss Eram
e *
-~ !
INatifyIaks %] Q sIOType ¥
Intsfare r iy Ermvam
NotifyInfo %
o Clhiss
,
elockTanget i)
Fs !
IReaderInfo Ed Q Sl
Intartaca =
ReaderInfo]
b Clhss
e "
- Eram
-~ !
ITagInfa = Q
Intsfae -
TagInfo £ eProgramSucces... %/
e Chss Erim
*
P !
1AlienI0Inks %] Q eMotifyInclude]
Intsfare r Ermvam
AlenIOInfo L
Chss
s
eProgIncrement %)
P ., Ervam
{Iﬂienu”mdelwfn £l Q
Intafaca P
Upgradelnfo 2]
Chss
*
Figure 1l: Alien RFID Library class diagram
.NET DEVELOPER'’S GUIDE
Doc. ConTROL # 8101948-000 Rev. H 3

INTRODUCTION CHAPTER 1

Installation

To use the Alien RFID library from within .NET Development Environment the
corresponding assembly must be installed locally to the working directory of your
client application or into the Global Assembly Cache (GAC.)

A reference to installed Library must be added to the project.

For your convenience, you may want to add the nsAlienRFID2 (nsAlienRFIDcf for
mobile build) namespace to the section “using” in C# or section “Imports” in
Visual Basic.NET (VB.NET.)

Sample applications of the Alien .NET SDK with their source code have to be
copied and used locally. All sample applications included in the package use
local copies of the Library.

In order to see micro-help for Alien Library members in the Visual Studio .NET
provided with the Microsoft IntelliSence feature a corresponding *.xml file must
be placed in the same directory as the Library.

The Alien .NET API Documentation.chm file provides the MSDN-style help for all
classes, methods, properties, and types of the Library. It can be open from any
location disregarding the Library or SDKs source code.

There are also setup package and merge module included for redistribution
Library to COM users. Those provide installation to the Windows directory and
registration in Windows Registry. Please see the “Visual Basic Developers
Guide” for detailed information on using Library as a COM component.

.NET DEVELOPER’S GUIDE
4 Doc. ConTROL # 8101948-000 Rev.H

CHAPTER 2 SUPPORTING DATA TYPES

CHAPTER 2
Supporting Data Types

Introduction

Object Browser available under the “View” menu entry in the VS.NET, allows one
to examine data types and interfaces provided within the DLL. There are several
supporting classes for working with reader and tag data: a number of
enumerations specifying some frequently used constants, a class with static
utility methods, and classes for storing information about reader, tag, tag
notification, IO event, reader upgrade etc.

The following figure details members of Alien .NET enumerations:

Figure 2: Alien RFID Library enumerations

Each of the following storage classes has a copy constructor and a
corresponding COM interface exposed by Library. Also, there are related utilities
in the AlienUtils class to parse a string from reader (in Text or XML format when
applicable) and return a data object.

.NET DEVELOPER’S GUIDE
Doc. CoNTROL #8101948-000 Rev. H 5

ComlInterface &
Enum
enumSerial eG2Bank
Enum
enumTCPIP eIOType "
Enum "
RESERVED eNotifyInclude =
EPC DI Enum
RFIDProtocol e USER Tags
Enum DIO All
DIDO DIO
enumEPCglobalCO DI
enumEPCglobalC1 DO
enumEPCglobalG2
eLockTarget 2 eLockType b3 eProgIncrem... [% eProgramSuc... (#
Enum Enum Enum Enum
EPC Lock Off Success
User Permalock Success TagData
KillPwd PermaUnlock Fail
AccessPwd Always

SUPPORTING DATA TYPES

CHAPTER 2

The ReaderInfo Class

Alien .NET AFI Library v.2.2.1 (mobile Beta - v.0.4)

ReaderInfo Members

FeaderInfo overview

Public Instance Constructors

=fp Readerlnfo

Overloaded. Initializes a new instance of the Readerlinfo
class.

Public Instance Properties

audRate connected on a port, represents the reader's curren
5l EaudRat If cted COM rt ts th der' t
BaudRate for =erial communication. Default = "115200".
omFo etz / Sets current Seriral Com port number. Default = 1.
Bl C Port Gets [/ Set t S | C rt b Default = 1

i HeartBeatTime

Setz / Gets reader's Hearbeat period in seconds. For
example: 30.

i InterfaceType

Setz / Gets enumeration identifying current reader interface
as Comlnterface.enumSerial or ComlInterface.enumTCFIP.
Default value i= ComInterface.enumSerial.

Address etz / Gets string with reader’'s IF Address. During the
&l [P Add Setz [Gets =t th d IF Add o th
SERIAL discovery process the clsReaderMonitor uses this
field to show the reader's current serial com port name if
the current InterfaceType iz Comlinterface.enumSerial.
atestHeartbes ets / Gets time interval since the last Heartbeat {in milli-
el LatestHeartbeat Sets / Gets t t | the last Heartbeat Il
zeconds.)
Eil MACAddress Represents reader's MAC Address.
ame etz / Gets string wi eader Mame. Default = "Alien
B Setz /[Gets =t th Reader M Default Al RFIC

Feader”

il Readerversion

Setz [/ Getz string representing current reader's version.

E5l TelnetFort Gets [Setz current network port number. Default value is
23.
E5l Tvpe Sets [/ Gets string describing reader type on the library

level.

Public Instance Methods

=g Equals

Compares current reader information to the same of
parameter chject.

=g GetdllFislds

Returns Dictionary containing all praperties of current
instance with their values shown as strings.

Figure 3:

ReaderInfo class

Whether found through a call to the clsReaderMonitor.CheckComPorts ()
method or by a multicast “Heartbeat” (see below), host applications are notified
of available readers via an event passing up an instance of the ReaderInfo
class. It contains key information that allows a software system to identify and
contact a reader. Information such as the reader name, type and address is

provided in this type.

.NET DEVELOPER’S GUIDE
Doc. ConTROL # 8101948-000 Rev.H

CHAPTER 2 SUPPORTING DATA TYPES

The Taglnfo Class
B
& I

Refresh Home Prirt

Options

Alien JNET API v.2
TagInfo Members

Taglnfo cwerview
Public Static Methods

|6 § Farse

‘ Parzes an Alien tag string returned by the reader into a TaglInfo object.

Public Instance Constructors

| =@ Taalnfo

‘ Cverloaded. Initializes a new instance of the Taglnfo class.

Public Instance Properties

el Antenna

Antenna number at which tag has been read.

B8l Direction

Direction the tag i= moving. Valid values: "+" approaching,
stationary.

receding, "0"

A DizcoveryTime

Read-write property representing time of tag discovery as string.

ostName ostName of the reader who read this tag.
EE Hostl Hesth f th d h d this t
Address ress of the reader who read this tag.
pEl[Fadd IPAdd f th d h d this
il LastSeenTime Read-write property representing time of last tag reading as string.
A addresz of the reader who read this tag.
ERMAC MAC add f th d h d this t
R MSI Specifies the Numberic System Identifier for Gen2 tags. valid values for any
byte in this array are 0 or 1 only.
B EcWord Tag's hexadecimal PC Weord as integer value.
rotoco or multi-protocol readers this represents the "number” of the protocol.
el Protocol F Iti tocol readers th ts th b f th tocol
eadCoun umber of times the tag has been read.
el ReadCount Number of t the tag has b d
eaderMame eaderMame of the reader who read this tag.
el Readerhl Readerl f th d h d this
EHIRSSI Strength of the signal received from the tag. Unitless, up to one decimal place.
whntenna or multi-static readers this reprezents the antenna number that received tag
EEl B ANt Fi [ti-=tat d th tz th t ber that dt
zignal.
el Speed Tag speed, in m/sec, signed, up to three decimal places.
E TaaCRC Fead-write property representing Tag CRC as Hexadecimal string.
e Taglata Obsolete. Obsolete. Replaced by the TagDatairray property.

e Taglatalrray

Array of hexadecimal strings representing tag data as specified by the reader's
AcqG2TagData property.

e Tagll Read-write propery representing tag 1D as Hexadecimal string.
B TAntenng For multi-static readers this represents the antenna number that transmitted

signal to the tag.

Public Instance Methods

=@ Equals (inherited from Object)

Determines whether the specified Cbisct iz equal to the current Chisct.

=@ GetField

Returns current value of specified field. E.G.: string tagID = myTag.GetField
("TagID");

= GetHashCeode (inherited from Object)

Serves as a hash function for a particular type. GetHashCode i= suitable for
uze in hazhing algorithms and data structures like a hash table.

=@ GetTvpe (inherited from Object)

Gets the Tvpe of the current instance.

= InzertTaglata

Figure 4:

Class

Allows to insert a hexadecimal string of tag data into this instance's
TagDatalfrray.

TagInfo

.NET DEVELOPER’S GUIDE

Doc. CoNTROL #8101948-000 Rev. H

SUPPORTING DATA TYPES CHAPTER 2

Taglnfo is a type for holding information about tags. This type allows one to track
the Tag ID, the CRC for the Tag ID, the date and time the tag was last observed
by the reader as well as number of times tag has been observed. Functions
such as AlienUtils.ParseTaglist() return arrays of Taginfo objects from raw
string data read by the reader.

The Notifylnfo Class

Alien RFID .NET Class Library

NotifyInfo Members
MNotifyInfo overview

Public Instance Constructors

=@ NotifyInfo Owverloaded. Initializes a new instance of the
MaotifyInfo class.

Public Instance Properties

E CommandFort Getz / Sets string representing current network;
port number. Default = "23".

Rl [PAddreszs Sets / Gets string with current IP Address of a
reader.

Exl MACAddress Represents MAC Address of a reader.

Eql BeaderMame Sets / Gets string with Reader Name.

Eil BeaderType Sets / Gets string with reader type.

Eil Beazon Sets / Gets string representing reason of
notification.

Bl StartTriggerlines Sets / Gets string representing external digital
input line that started the reader’s automode
sequence.

E5l StopTriggerlines Sets / Gets string representing external digital
input line that stopped the reader's automode
sequence.

El Taglist Sets / Gets array of type Taglnfo representing
Alien TagList.

El Time Sets / Gets string representing time of
Motification.

Figure 5: Class NotifyInfo

Notifylnfo is a storage type for information sent by the reader automatically as a
Notification message and contains corresponding fields and properties. Client
application can use Alien Utilities methods that parse an incoming notification
string either in the Text format or as XML and return an instance of class
Notifyinfo.

.NET DEVELOPER’S GUIDE
8 Doc. ConTROL # 8101948-000 Rev.H

CHAPTER 2 SUPPORTING DATA TYPES

The AlienlOInfo Class

Alien RFID MNET v1.2.19 Class Library
AlienIOInfo Members

AlienI0Info overview

Public Instance Constructors

=@ Alienl0Info Owverloaded. Initializes a new instance
of the AlienIQInfo class.

Public Instance Properties

E& [OTvpe Sets / Gets 10 Type.

B MACAddress Represents MAC Address of a reader.

Bl Time Sete [/ Gets string representing time of
10 event.

EH Value Gets / Sets decimal bitmask

representing 10 port value.

Figure 6: Class AlienIOInfo

AlienlOInfo class contains properties characterizing an asynchronous Digital
Input or Output event as a part of Alien IO Stream as well as members of an
IOList returned by the reader synchronously.

The static AlienUstils.ParseAlienlOEvent() method returns an instance of this
class after parsing a string received from the reader.

NOTE: Older readers don’t support IO Stream and IOList.

.NET DEVELOPER’S GUIDE
Doc. CoNTROL #8101948-000 Rev. H 9

SUPPORTING DATA TYPES CHAPTER 2

The Upgradelnfo Class

Represents information included as a parameter in the UpgradeProgress and
UpgradeComplete events after calling the UpgradeFirmware() method.

This class also overrides the ToString() method to return a multi-line string with a
list of current properties formatted as <name>: <value> pairs

Alien RFID .NET v1.2.15 Class Library
UpgradeInfo Members

Public Instance Constructors

=@ Upagradelnfo Overloaded. Initializes a new instance of the
Upgradelnfo class.

Public Instance Properties

EH CanCancel Provides true/false information about if it is =afe ta
interrupt with running upgrading process and cancel
it.

& Cancelled Provides true/false information if upgrade process
has been cancelled.

cmplete rovides true/false information about completion o

EEC leted P des true/fal fi t bout let f
the uparade process.

&l Meszage Provides description abaut current upgrading tasks
and status.

&l PercentDone Provides percentage status about current upgrading

task. (Not available far all upgrading tasks.)

& Reconnected Provides true‘\false information about status of
restoring connection after upgrade.

ateRestore rovides true/ffalse information about status o
g5 StateRestored Frovides true/fal f t bout status of
restoring reader's state after upgrade.

! UpgradeResult Provides information about status of firmware
upgrading with an uploaded file. value of 0 indicates
that reader has been upgraded successfully; value
of -1 indicates that upgrade process has been
interrupted by a failure and/or cancelled; ather
error codes possible.

e UploadResult Provides information about status of uploading a
firmware file to reader. Value of 0 indicates that
firmware file has been uploaded successfully; value
of -1 indicates that upload process has been
interrupted by a failure and/or cancelled; other
error codes possible.

Figure 7: Class UpgradelInfo

10

.NET DEVELOPER’S GUIDE
Doc. ConTROL # 8101948-000 Rev.H

| *

CHAPTER 3

CLSREADERMONITOR

CHAPTER 3
The clsReaderMonitor Class

Introduction

In order to use and control an Alien reader it must first be discovered. This can
mean discovery on the network or discovery on serial ports. The
clsReaderMonitor contained within the Alien RFID Library is a class that can
automatically search for and discover readers using each of these connection
modes. Use methods StartListening and StopListening for starting
and stopping monitoring over both TCP and Serial connections.

All discovered readers information is stored in two separate collections and
monitored separately depending on the values of boolean
ComPortsMonitoring and NetworkMonitoring properties. The methods
GetReaderList () and ClearAllReaders () apply to all readers on both
serial and network connections.

Similarly, the events ReaderAdded, ReaderRenewed, ReaderRemoved, and
ReaderListUpdated get raised for both serial and network connected readers
and contain information about all discovered readers.

In order to receive clsReaderMonitor events client application must subscribe to
them and implement event handler procedures.

In VB.NET this is done by declaring an object of cisReaderMonitor WithEvents
and writing event-handler routines.

The code in the Development Kit demonstrates how to do this in C#:

“QE}{S.FDrml
=

[+

Figure 8:

ﬂ ||§0Form1_LDad(Dhject sender, System. EventArgs)

private void Forml Load(ohject sender, System.Eventlrgs e)

i

miMonitor = new clsBeaderMonitor():

i

Subscrikbe to clsReaderMonitor events

mlonitor.Readeridded +=

new clsReaderMonitor.ReaderiddedEventHandler imMonitor Readeridded) ;

mMonitor.ReaderReneyed +=

new clsReaderMonitor.ReaderRenewedEventHandler (mMonicor ReaderRenewed)

mlonitor.ReaderRemowved +=

new clsReaderMonitor. ReaderRemovedEventHandler {mMonitor ReaderRemoved) ;

private wold mMonitor Readeridded (ReaderInfo data)f. ..
private void mMonitor ReaderRenewed|ReaderInfo data]
private woid mMonitor ReaderRemoved (ReaderInfo data]

I Wi

Example of Subscribing to clsReaderMonitor events in C#

.NET DEVELOPER’S GUIDE

Doc. CoNTROL #8101948-000 Rev. H 11

e

CLSREADERMONITOR CHAPTER 3

During automatic monitoring all events get raised on a ThreadPool thread and
should not be used for updating GUI. Moreover, when inside an event-handler
procedure, the further discovery and monitoring process has been disabled until
return. So, it is essential to not to include prolonged operations in an event-
handler method.

Application #4 provides one approach to managing data passed with events.
Received Readerinfo data get added to module-level collection variables. After
this the control on this ThreadPool thread is immediately returned to the library.
Accumulated in collections data get processed by a System.Timers.Timer object
synchronized with the current form. This allows to manage the Timer_Elapsed()
event on the GUI thread and to avoid a longer manual Invoking. Client
application can manage timer’s time-interval separately.

*¢Ex4 Form1 | |s®

I

private wvoid mMonitor Readerldded (ReaderInfo data)
{
lock (mReaderList.3yvncRoot)
{
if ['mBeaderlist.Contains(data.Name))
mwReaderList. Add (data.Name, data):
H
|"Queue incomming wessages for display”™

Figure 9: Example implementation of the clsReaderMonitor.ReaderAdded event

(Quickly assign received data to the mReaderList ListDictionary and return)

”I;E}{4.Furm1 ﬂ |,'=='rr‘mMDnitDr_ReaderAdded(F{eaderlnﬁ: datal

[

private void mTimer Elapsed(object sender, ElapsedEventlrgs =)
{
if (mwTimer '= null)
{
mTimer.3tap ()
lock (mEeaderlist.3vyncRoot)
i
1lhReaders. Items. Clear () !
foreach (DictionarvEntry de in mPBeaderList)
{
ReaderInfo ri = ([ReaderInfo)de.Value;
string name = ri.Name + "™ on " + ri.IPiddress;
if [(lbReaders.Find3tringExact (nawe) == ListBox.NoMatches)
1bReaders. Items. Add (hame) ;
H
H
|"Display messagesT. ..
if [('mbhClosing)
wTier.3tart ()

|
Figure 10: Updating ListBox lbReaders with received data

12

.NET DEVELOPER’S GUIDE
Doc. ConTROL # 8101948-000 Rev.H

%

Wl

CHAPTER 3

CLSREADERMONITOR

Alternatively, the cldReaderMonitor.SynchronizingObject property can be
assigned with the current form object. This will result in shorter code and allow to
update form’s controls directly from event-handlers procedures though it appears
to partially freeze GUI.

Please see Example applications # 4, # 5, and # 7 provided with the
Development Kit for more details on serial and network discovery and monitoring
and for different approaches to managing of multi-threading result.

Serial Discovery and Monitoring

The clsReaderMonitor checks all available com ports (excluding modem

ports) listed in the registry key HKLM\HARDWARE\DEVICEMAP\SERIALCOMM\
and the sub-key Device.

Discovery of Alien readers attached to serial ports of a host computer supports
manual calls to the CheckComPorts () and GetReaderListOnSerial ()
methods. Both methods return synchronously after completion of operation.
The CheckComPorts () method returns with an empty string or “No reader
found”.

H;Ex4funnl

i

i

¥

Figure 11:

| a®

é private wvoid btnCheckPorts Click{object sender, System.Eventlrgs e

this.Cursor = Cursors.Waitcursor:
String result = mMonitor.CheckComPorts():
if (resultc == M

result = "Readers found!hrin™;
btnzetReaderlist Click({null, nullj:

rtxMessages. AppendText (result + "Yrivn"):
this.Cursor = Cursors.Default;

|
Manually checking presence of Alien readers on Com ports

The GetReaderListOnSerial () method returns number of readers found
and an array of currently known readers connected to the serial port. A client
application obtains the current reader list by calling this function and passing a
not-initialized array of type Readerinfo as an “out” parameter to the second
method.

.NET DEVELOPER’S GUIDE

Doc. CoNTROL #8101948-000 Rev. H 13

CLSREADERMONITOR CHAPTER 3

*#Ex4.Farm1l ~| |g® ~|
g- private wvoid btnGetReaderlList Click(object sender, 3ystem.Eventlrgs e) |
i
ReaderInfo [] rs;
this.Cursor = Cursors.WaitCursor:
int cnt = mMonitor.GetFReaderListonierial (out r3);
mBReaderList.Clear () ;
lbEeaders. Items.Clear () ;
if (ont == 0)
i
rtxMessages. AppendText ("Reader List emptyirin™);
'
else
{
for {(int i = 0; 1 < ent; i+4)
i
mBReaderList.Addirs[i] .Name, rs[i]): L |
lbReaders. Items.Add (rs[1i] .Wame + ™ on ™ + rs[i] . IPAddress);
H
}
this.Cursor = Cursors.Default;
' 8
] | [% |_
Figure 12: Getting current reader list on Com ports
Setting the property ComPortsMonitoring = true allows to detect Alien
readers connected to available Com ports automatically. The client application in
this case has to subscribe to the events ReaderAddedOnSerial,
ReaderRenewedOnSerial, or ReaderRemovedOnSerial raised by the library
and implement methods for handling these events in a way similar to the
demonstrated in the previous section.
There is also method ClearSerialReaders() available for more flexible
managing of discovered readers. It erases all items from the current list of
readers on Com ports. This method doesn’t affect list of network-connected
readers. Therefore, if there are on-line and the NetworkMonitoring property
is set to true, method GetReaderList () can return not empty.
aI;E}aec4.F|:|rrnl ﬂ |,'=:'rr’htnCIearReaderList_CIick(Dhject sender,System Eventargs e) = |
private woid htnClearReaderlList Click(object Sender, System.Eventlrgs =) o]
{ -
mMonitor.ClearSerialBeaders1():
lbReaders. Items.Clear ()2
mReaderList.CleaI[]: -
} b
a I T
Figure 13: Clearing the current list of serial-connected readers, GUI, and
the collection variable
.NET DEVELOPER’S GUIDE
14 Doc. ConTROL # 8101948-000 Rev.H

CHAPTER 3 CLSREADERMONITOR

Network Discovery and Monitoring

Each Alien reader is configured by default to send out broadcast messages to its
local subnet. These messages are small XML documents detailing the reader
type, name, and contact information. By listening for these messages, instances
of the cl1sReaderMonitor class can identify and report back details of readers
that are alive and on the network. @ To enable network monitoring set the
NetworkMonitoring property to true.

The class instance will catch reader “heartbeats”, decode them into ReaderInfo
type objects, and update its internal Reader list with this information, raising
either ReaderAddedOnNetwork, or ReaderRenewedOnNetwork events to
an application.

Part of the heartbeat sent out by the reader indicates the time until the next
heartbeat is expected. If this time expires before a new heartbeat is received,
then the class will assume the reader has gone offline and will raise the
ReaderRemovedOnNetwork event.

At any time the current list of the on-line networked readers can be obtained by
caling the clsReaderMonitor.GetReaderListOnNetwork() method.
This will return a number of currently on-line readers and an array of Readerinfo
objects the same way as illustrated above.

The method ClearNetworkReaders () erases all items from the current list of
readers discovered on network. It doesn’t affect list of serial-connected readers.
Therefore, if there are readers on Com ports and ComPortsMonitoring
property is set to true, method GetReaderList () can return not empty.

Please see examples above and SDK for coding guidelines.

% Alien Library .NET - Testing Network Discovery Example

Start Listening

Stop Listening
i FID' R
GORT Main

Click a reader for detail information

TelnetPort Type IPéddress HeartBeatTim | LatestHeartbe | ComPart Mame InterfaceT ype
23 alien RFID T 101.60.16 an 28000 1] Alien AFID Reader enumTCFIP

Figure 14: Example application # 5 in actions

.NET DEVELOPER’S GUIDE
Doc. CoNTROL #8101948-000 Rev. H 15

CLSREADERMONITOR CHAPTER 3

The following figure shows the screenshot of the Example application # 7 in
actions demonstrating monitoring readers on both network and serial
connections.

Check to enable
Monitoring Heartbeats
over the Network

Check to enable
Monitoring Com Ports

1 on10.1.60.27

n101.6016

Update Time [zec]:

Clear Metwork Readers Clear &l Readers Clear Serial Readers

Figure 15: Monitoring Alien Readers both on network and serial connecitons

.NET DEVELOPER’S GUIDE
16 Doc. ConTROL # 8101948-000 Rev.H

CHAPTER 4 CLSREADER

CHAPTER 4
The clsReader Class

Introduction

The clsReader class is used for communicating with a reader either over the
network or serial port. Typically the clsReader object will be initialized with data
obtained from a clsReaderMonitor class, discussed in the previous section.
However if the location (either serial port name or network address) is known, a
clsReader object can be instantiated directly without the need of any discovery
class.

Once a valid reader object is available, it offers the user a number of simple
commands that implement the full command set described in the Alien Reader
Interface Guide.

Instancing a Reader from the clsReaderMonitor Discovery
Class

If a discovery class is used (see previous section), any readers that are found on
the network or serial ports will result in a ReaderInfo data type object being
passed to the application. To convert this data into a c1sReader object, declare
an instance of the clsReader class and use the
clsReader.ReaderSettings property:

private void mMonitor_ReaderAdded (ReaderInfo data) {
clsReader r = new clsReader();
r .ReaderSettings = data;

}

Figure 16: Creating an instance of the reader from the Reader Monitoring

Instancing a Reader Directly On a Serial Connection

If it is known that a reader exists on a specified serial port, a new Reader object
can be initialized with default or pre-defined settings directly without having to
use the discovery classes.

private clsReader mReader = new clsReader();

private void btnConnect_Click (object sender, System.EventArgs e) {
mReader.InitOnCom();

Figure 17: 1Initializing reader for serial communication

.NET DEVELOPER’S GUIDE
Doc. CoNTROL #8101948-000 Rev. H 17

CLSREADER CHAPTER 4

In the example above, a new reader object is created and initialized on Com port
using InitonCom() function. This method has two overloads: one initializes
reader object on a default Com port, another includes an integer argument
specifying Com port number.

This is all that is required to instance a new reader object. This will tell the
mReader object that it has to prepare to serial communication with reader. Using
properties of clsReader, you can specify other Com port settings prior to
opening port.

Instancing a Reader Directly on the Network

If it is known that a reader exists at a specified network address, a new reader
object can be created directly without having to use the discovery class in a
manner similar to instancing a reader directly on a serial port.

In this case function InitOnNetwork () should be used passing two argument
required for initializing an object for network communication: a string for
IPAddress and an integer for port number.

mReader.InitOnNetwork (txtIPAddress.Text, 23);

Figure 18: 1Initializing reader for network communication

NOTE: If the InitOnCom () or InitOnNetwork () functions had been called on
a connected object of class clsReader, this will cause the existing connection
to be closed.

Opening and Closing Connection to a Reader

Once a Reader object has been instanced and its connection settings configured,
a connection to it can be opened and the reader can be used. This is achieved
using a single method:

String result = mReader.Connect();

Figure 19: Opening connection to the reader

Calling this method will open the connection either serial or networking. This
method returns synchronously after finishing operation. The return value is a
string indicating status:

e “Already connected”, if object had been connected before calling this
method.

e “Connected”, on success.

.NET DEVELOPER’S GUIDE
18 Doc. ConTROL # 8101948-000 Rev.H

CHAPTER 4

CLSREADER

e “Can’t connect” or “Alien caught exception:
appended in case of failure.

with exception message

In case of serial connection, library opens com port and sends to the readers a
set of basic commands in order to verify if the reader can respond.

On success, this method raises Connected event to the calling application. This
event can be raised on a separate thread depending on the connection type.

Use boolean IsConnected property to test if connection is open.

In case of network interface type, although connected, at this point the
application cannot yet make use of the reader object. For that, a second method
must be issued to login to the reader as shown in the code sample:

if (mReader.IsConnected) {
txtResult.AppendText (result) ;

if (mReader.Login("alien", "password")) ({
DisplayText("Logged in - OK!");

}

else {
DisplayText ("Login failed");
mReader .Disconnect () ;

Figure 20: Logging to the network

All network based readers require a username and password to use them. By
default all network readers will use “alien” as the username and “password” as
the password. Once connected and logged in, these can be changed and
verified using the clsReader.Password and clsReader.UserName
properties.

Failure to set the correct username and password when logging in will return a
boolean value of “false” from a call to the above function.

Finally, a connection to a reader can be closed using the Disconnect method.
This method returns synchronously after closing connection and destroying all
supporting threads.

The return value is:
e Empty string on success
¢ “Not connected” if not applicable

e “Alien caught exception: “ with exception message appended in case of
any unexpected failure.

On success, this method raises Disconnected event to the calling application
with “Disconnected by client’ string argument value.

.NET DEVELOPER’S GUIDE

Doc. CoNTROL #8101948-000 Rev. H 19

CLSREADER CHAPTER 4

Communication with a Reader

All commands to and from the reader (see Alien Reader Interface document for
details) are ASCII text based messages that take the form of command-response
pairs. The clsReader class provides two generic methods called
SendReceive () and Send () for ASCIl based communication with the reader.

The sendReceive () is synchronous (blocking) method. It takes an input string
containing a reader command with required parameters and a boolean flag
indicating whether the reader response should include user prompt for further
operations. Upon completion of operation, it returns a string with reader
response parsed for convenient use. In case of failure an exception will be
thrown.

The send () is an asynchronous void method. It takes the first parameter same
as SendReceive method. The second parameter is a boolean flag indicating
whether the first parameter should be considered as “raw data” or not. It returns
immediately after sending data to the reader. In case if connection was not
established or has been lost, the Disconnected event shall be raised. Any
exception happened on the caller’'s thread shall be re-thrown to the caller. The
reader’s response should be taken in one of the available events raised
asynchronously and on separate threads:

e DataReceived event containing a part of reader’s response usually
terminated by the “carriage return” and “new line” characters.

e MessageReceived event containing complete reader response
terminated by null-character.

i

File Zoom Tools Help

Alien Ex3|- Reader E\rE...E] E]

Tz Nor-blocking

gec reasermame Wil

Ger Message
. Efecking Send-Feceive

08,09, 26.00

derMarme = Alien RFID Reader[...

I ™

Figure 21: Comand/Response communication of
Alien reader with a mobile device.

20

.NET DEVELOPER’S GUIDE
Doc. ConTROL # 8101948-000 Rev.H

CHAPTER 4 CLSREADER

B8 Alien Library .NET - Testing Reader Events

Tranzact
Command: get Taglist Synchrounously

Send
Asynchronously

Figure 22: Synchronous and asynchronous reader responses

To make life simpler for developers, the basic reader object also supports many
additional methods that directly correspond to the reader command set. These
methods and properties use synchronous communication with the reader. They
return after completion of a command by the reader with its response.

For example, the reader object has a property called PersistTime. This
property returns an integer number. It is effectively the same as calling the
SendReceive (“get PersistTime”, false) method and then parsing the
string reply into an integer.

.NET DEVELOPER’S GUIDE
Doc. CoNTROL #8101948-000 Rev. H 21

TAG WORKS CHAPTER 5

CHAPTER S
Tag Works

Introduction
The reader can program an individual tag and/or read tags’ data.

While older readers supported only working with EPC ID field of the EPCglobal
Class1 tags, the ALR-9800 readers utilizing Class1 Generation2 tags can read
and program other memory banks also. There are many reader’s properties that
affect acquiring or writing data from/to tags. Please refer to the Alien Reader
Interface documents for more details.

Reading Tags

As discussed in the Alien Reader Interface Guide, there are a number of ways to
read tags. In interactive mode, the reader can read multiple tags at once using
the get TagList commands:

string result = mReader. TagList;

Figure 23: Obtaining reader internal Tag list

When reading tags ID field, TagList can be represented in several formats:
(default) Text, XML, Terse, or custom. The AlienUtils class provides static
methods (and c/sReader and CAlienServer non-static methods) for parsing tag
list strings into an array of Taginfo objects (Described above) that may be more
convenient for developers to use.

Note: These parsing features have been implemented only for the Text, XML,
and Custom formats (please note that not all Custom formats can be parsed by
current version of APIl: data fields in tag information must have at least one
separator character (like a space, for example.)

2C Ex2-Telnet Connection - Microsoft Visual C&# NET [break] - Ex2.cs

Ele Edit Wiew FProject Build Debug Tools Window Help
B-a-cHl0 4 BR o c-8-5) Db v | @ mTimer, - BEmRF-.
» oIl omom| v "ELEtE Hex |- IE S b e |[EEE|

R X |/1.cs [Design] | Exl.cs | Exz.cs [Design] Ex2.cs | Ex7.cs | Exd.cs [Design] | Ex3.cs [Design] | Ex3.cs | Ex7.cs [Design] | AlierReader, 4 P X ||Solution E..,. & X
Mﬂ Ial;Exl.Forml LI I.ﬁ‘butb:nS_Click(Dbject sender, System.Eventargs) LI = = =
hF String result = mReadsr Tadlist: - EEFBTE”CES -
[: . pp.ico
o mp]]Z.JlsplayText {result) ; Pl ool
I 1f ({result.Lendglrest = "Tag:8000 8004 2383 2037, Disc:2004/03/20 15:45:49, Last: 2004/03/20 18:45:49,
.? msTags = resyCount:s, AntiOyinTag:B8000 5004 0000 0009, Disc: 2004,/03/20 18:45:49, Last: 2004/03/20
L } 18:45:49, Count:4, Ant:0\\yiTag:B000 8004 2372 1229, Disc:2004,/03/20 18:45:49,
L Last: 2004/03/20 18:45:49, Count:4, Ant:.0"

Figure 24: Tag list returned in Text format (default)

.NET DEVELOPER’S GUIDE
22 Doc. ConTROL # 8101948-000 Rev.H

CHAPTER 5 TAG WORKS

?¢ Ex2-Telnet Connection - Microsoft Visual C& NET [break] - Ex2.cs !Elm I
Ele Edit Mew Project Build Debug Tools Window Help
E-tn-SEHE| $ BR o-o-8-B| D - | mTimer. pl 7 Nl e R

» ol omo@m | % FELECE Hex W - S R B s | £ T2 4% %%

7

'1.cs [Design] | Exl.cs | Ex2.cs [Design] Ex2.cs | Ex7.cs | Exd.cs [Design] | Ex3.cs [Design] | Ex3.cs | Ex7.cs [Design] | slienReader. 4 » X ||Solution E... & X
I%EXI.FDI’MI vI I,ﬁ.huttnn2_cllck(oh]ect sender, Systerm.Eventargs &) VI = B3 =

E
13

kF { [:5] References I
- -
. L mReader .TagListFormat = "XML"; APp.ico
C . . [¥] assemblyInfo.c
- String result = mReader.TagList: Ewl.cs
- L) UISH — !'“ Lo Ex2-Telnet Conn
= if {{result._Length > 0} && {(result.IndexCf{"No Tags") == -1}) [55] References
= msTags = |Jresult = "<Alien-RFID-Tag-List>yryn<alien-REID-Tag=yy1 <TaglD=8000 8004 2383 2037 </TaglD=ry
P } <DiscowveryTime= 2004/03/20 18:52: 16 < /DiscoveryTima=yyn <l astSeenTimeas 2004 /03/20
,’ ; L 18:52: 16</ astSeenTime=YyYy1 < Antenna=0-=</Antenna= Yy

«ReadCount= &« ReadCount= iy« /Alien-REID-Tag= Yy« Alien-REID-Tag=yyhyn < TaglD=5000 8004 00

= private vold buttisnge . maoimsiyin <DiscoveryTime = 2004/03/20 18:52; 16</DiscoveryTime=yin
1 <L astSeerTimes 2004,/03/20 168:52: 16=/_astSeanTime= '\ <Antennas=0-< antennas= iy
if {(msTags . Le[<ReadCount=&</ReadCount= "< Alien-RFID-Tag=\n<Allen-RFID-Tag=yy1 <TaglD=8000 8004 233
i 1229</TaglD>"y\1 <DiscoveryTime> 200403720 18:52: 16 < /DiscoveryTime=yrin

<LastSeenTime> 2004 /03/20 18:52; 16</LastSeenTime=yy1 <Antenna=0</Antenna=yyn
<ReadCount= 2< ReadCounts\rin=< /alien-REID-Tags>\yyn=< falien-REID-Tag-List= "

if {(mRead
L

Figure 25: Tag list returned in XML format

Each of these strings can be turned into an array of Taglnfo objects by passing
the string to a Tag List parsing method.

ist - Microsoft Visual C# .NET [break] - Ex6.cs
Eilz Edit Yiew Project Build Debug Tools ‘Window Help
B2 & ¥ % » Debug * B Visble = false 5
» B P TELEE oHe B, %k o

a || stat Page | ExG.cs [Design] Exﬁ.cs|

Clip.... |¢§Ex6.FDrm1 ;J |§thnParse_CIick(Dbject sender, Systemn . Eventargs e) j =
G. f—] private void btnTaglist Click{object sender, System.Eventirgs e o ﬂ ~
L t
this.Cursor = Cursors.WaitCursor:
mwReader . TagListFormat = rdoText.Checked ? "Text"™ : "XNL";
3tring result = mBReader.TagList: |
if {({result.Length > 0) &£& (result.IndexOf("MNo Tags™) == -1))
msTagys = result; -
4 msTags = "<Alien-RFID-Tag-List='r\n<alien-RFID-Tag=\yyn <TaglD=B000 8004 2372 1220<TaglD=Yn 4
& FEvALE VD:.l<DiscoveryTime>2DD4{11{14 02:09:21</DiscoveryTimesyhy <LastSeenTime =2004,/11/14 ﬂ
i 02:09:21</astSeenTime=Yyn <aAntenna=1-</Antenna=Yyin

<RaadCount>14 < ReadCount=yn</alien-RFID-Tag =y yi<alien-RFID-Tag=yy <TaglD=2000 2004 3065
5357 </TaglD =Yy <DiscoveryTime>2004/11/14 02:09:21</DiscoveryTime=yr\n <LastSeenTime=2004,/11/14

1T L0905, 00,51 </ astSeenTime>Yyin <Anternas1</antennasyrin
: |=ReadCount= JBO-REIC-Tag =Yr'yn</Alien-RFID-Tag-List=" +
= U= . THILC UL S0L - o
TagInfol[]l aTags: 5
Lry "
{ C ; f’gj +
int cnt = AlienUtils.ParseTaglList (msTags, out aTags): — 3]
aTags[0] . TagID ~
o - LS / "5000 8004 2372 1223" ’:
T aTags[1]. TagID
{ "g000 8004 3066 E3IETM
malTags = new ArrayList (aTags):
dataGridl.DataSource = malTags; aTags[0].LastSeenTine
H "Z004,11/14 02 02:21"
elze aTag=s[1l].LastSeenTine
i "2004/11/14 02:09:21"
textReaderTalk. LppendText (m3Tags + "\rin"): aTags (0], BeadCount J
H 14
this.Cursor = Cursors.Default; aTags[1].ReadCount
37 1& v ﬂ .
4 <00 > €|
Ready Ln 646 Col 21 cha NS

Figure 26: Parsing obtained Tag list

.NET DEVELOPER’S GUIDE
Doc. CoNTROL # 8101948-000 Rev. H 23

TAG WORKS CHAPTER 5

Note: The abbreviated tag list format does not contain antenna information or
discovery times as part of the data.

The included into the Alien .NET SDK sample application “Ex6 — Tag List”
demonstrates reading tags ID field and parsing TagList results:

2 Alien Library .NET - Testing Tag List

Com Part

®
Part Marne; I—Ll
Tirmeout [ntereal: COM4:
4,000 :

Tag Lizgt Format

_ GEtlag - 4 = g Earse Tag -

Ta

Antenna LaztSeenTime DizcoveryTime FeadCount TaaCRC TaaglD
20041114 020921 2004114 020324 14 20008004 23721229
20041114 020921 2004114 020324 16 2000 8004 3066 5357

Figure 27: Ex6 - Tag List running

The other principle ways to read tags are based on autonomous mode and
asynchronous reader messages sent when readers NotifyMode or
TagStreamMode are ON. If using network connection to the reader then these
messages must be obtained by another API object and managing events raised
by this object. Please see the Chapter 6: The CAlienServer Class for details.

Programming Tags

The following programming related methods and properties are available with the
Alien .NET API on an instance of the clsReader object:

+ Commands supported by all readers
* ProgramTag
* EraseTag

* LockTag

.NET DEVELOPER’S GUIDE
24 Doc. ConTROL # 8101948-000 Rev.H

CHAPTER 5 TAG WORKS

* KillTag

* ProglncrementOnFail
* ProgramPassCode

* ProgramID

* ProgAttempts

* ProgEraseAttempts

* ProgReadAttempts

* ProgSucessFormat

+ Commands supported by ALR-9800 and later:
* PrgramEPC
* ProgramAndLockEPC
* ProgramUser
* ProgramAndLockUser
* ProgramKillPwd
* ProgramAccessPwd
* ProgEPCData
* ProgEPCDatalnc
* ProgC1KillPwd
* ProgG2KillPwd
* ProgG2AccessPwd
* ProgUserData
* ProgUserDatalnc

* ProgG2LockType

* Lock
* Unlock
* G2Write

* ProgramAlienlmage
* ProgAlienlimageMap
* ProgAlienlmageNSI

The sample application “Example11 — Programming Tags” with its source code is
included in the Alien .NET SDK to demonstrate various programming features of
Alien readers and the .NET API.

.NET DEVELOPER’S GUIDE
Doc. CoNTROL #8101948-000 Rev. H 25

TAG WORKS CHAPTER 5

Current tag ID
(EPC filed)

rent ID: 1223344556677 8899 AABB

00 00 00 00 00 00 00 00]

Select
programming
antenna Prog. Antenna

Adjust RF User data BEFORE
Power Protocol programming

@0 ®1 ®2 ®3 RF Power (%): m * @ Class1Gen2

Command: Options: Diata Field:

User data to
Select — Waord Pointer 51) program
programming
action

Reading Tags:
Current ID: 001122334455 6677 8899 AABB

1122 AABB CCDD EEFF

Programming: User data AFTER
Prog. Antenna Protocol programming

o0 &1 7 . O Class1 Gen2

Options: Diata Field:

E 1122 AABE CC DD EEFF

Figure 28: Examplell - Programming Tags running

.NET DEVELOPER’S GUIDE
26 Doc. ConTROL # 8101948-000 Rev.H

CHAPTER 5

TAG WORKS

Selecting from the “Command” combo-box a command that uses a pre-defined
parameter causes the combo-box “Options” to be filled with suitable values and
current value has been selected in the latter.

Application allows also selecting and adjusting power for programming antenna
as well as programming protocol and acquisition parameters.

You can read any field in a Class1 Gen2 tag by selecting a Gen2 Bank, a word
pointer where to start reading, and word length specifying how many words to

You can write to any field in a Class1 Gen2 tag (subject to a tag’s state) using
different methods.

NOTES:

1. Prior to programming make sure your reader can successfully
singulate a tag indicated by a green background of the CurrentID label.

2. Not every Class1 Gen2 tags can make use of all memory banks.
Please consult tag vendor documentation.

3. The ProgramAlienimage, ProgAlienimageMap, and
ProgAlienimageNSI commands intend for use with Alien tags (Higgs)
only.

4. Currently, after changing the ProgAlienimageMap for a Higgs tag
from the default EPC96 to a different memory map, you may use the
ProgramAlienlmage command just ONCE. Any subsequent use of this
command will fail. Instead, you can successfully program separate parts
of the tag’s memory by use of the G2Write, ProgramUser, ProgramEPC
etc. commands.

.NET DEVELOPER’S GUIDE

Doc. CoNTROL #8101948-000 Rev. H 27

NOTIFICATIONS AND STREAMING CHAPTER 6

CHAPTER 6
Alien Notifications and Streaming

Introduction

The CAlienServer class provides methods for listening for asynchronous
messages as Alien Notifications and/or Tag- and 10-Stream events sent by Alien
Readers over network.

You can create several server objects for listening on different types of
messages and/or on messages from different readers using different port
numbers.

If you don’t specify explicitly, the first available IP Address from the list resolved
for this host machine by DNS will be used to listen on.

The following figure lists members of the CAlienServer class:

-) CAlienServer Class
[£] calienserver Members

= () CAlienServer Canstructor
[£] calienServer Canstructor {)
[£] calienserver Constructor (Int32)
[£] calienServer Constructor (Int32, String)

=] Properties
[£] ActiveConnectionsCount Property
[£] PAddresses Property
[£] IPAddressString Property
[£] 1sListening Property
[£] MaxNotifications Property
[£] MaxQueuedMessages Property
[£] NotificationHost Property
[£] Port Property

= (] Methods
[£] Dispose Methad
[£] GetallPAddressesStrings Mathod
[£] GetCurrentlOEvents Method
[£] GetCurrentMotifications Method
[£] ParseNatification Method
B StartListening Method
[£] stopListening Method

= [Evenis
[£] serverConnectionEnded Event
[£] serverConnectionEstablished Event
[£] serverListeningStarted Event
[£] serverListeningStopped Event
[£] serverMessageReceived Event
[£] serverSocketError Event

Figure 29: Members of the CAlienServer class
CAlienServer maintains a collection of established connections identifying each

connection with an unique identifier (GUID) and precedes all event messages
with this connection specific GUID.

.NET DEVELOPER’S GUIDE
28 Doc. ConTROL # 8101948-000 Rev.H

CHAPTER 6

NOTIFICATIONS AND STREAMING

Retrieve Notifications Synchronously

In case of NO subscribers to the ServerMessageReceived event, all incoming
messages get collected in an internal queue limited to a maximum defined by the
MaxQueuedMessages property (default is 100.) A client application can retrieve
these messages synchronously by calling methods
GetCurrentNotifications () and GetCurrentIOEvents (). Returned
messages will be cleared from the queue by these calls.

This feature intends for a development environment less suitable for multi-
threading (e.g.: Visual Basic 6) and is demonstrated in the Alien VB6 SDK.

Asynchronous Notifications

User can subscribe to events raised by a server to receive updated information
about established / lost connections and incoming messages.

There are several example applications in the Alien .NET SDK named “Ex9 ...”
provided with their source code that demonstrate how to use this functionality
among other Alien library features.

Since all events get raised on a thread different from the GUI thread, there
should be care taken when an applications receives an event and tries to update
its GUI. The source code of these examples demonstrates also how deal
effectively with the multithreaded events.

Ex9 - Notifications

Using Notifications Example Application you can listen to several readers that
send Tag Notification Messages through network and, additionally, one that has
NotifyAddress set to “Serial.”

The following is a series of steps for setting this example up and running:
1. Connect one or more Alien readers via both Serial and Network connectors.
2. Start the “Ex9 — Notifications” application.

3. Make sure your host PC and the reader(s) are on the same subnet.
Sometimes, there are more than one IP Address on a computer. The status
message will tell you if you select in the “IPAddress” ComboBox a wrong
one.

4. Using serial connection (the “Talk to Reader on Serial’ group) configure
every reader for NotifyMode or both Notify- and AutoMode.

5. When configuring every reader, check the “Send Notifications to Network”
RadioBox for readers that use TCP connection for Notifications and the
“Serial” for the last one.

6. Watch network notifications caught by the CAlienServer class instance.

Watch serial notifications caught by the clsReader class instance.

.NET DEVELOPER’S GUIDE

Doc. CoNTROL #8101948-000 Rev. H 29

NOTIFICATIONS AND STREAMING CHAPTER 6

B8 Alien Library .NET - Testing Notifications

o Channel (TCP) - = r Command Channel (Serial)

: e ~ 3 . Valya's
GUID added ess: : B Alien RFID Reader on 10.10 82,147
by the server .82, 115200 Valya's 9780 on H]

HTime: 711.5
#Reason: TIMED M
H5

6, 7. Watch
Notifications here

Get the Tag
List from

every reader
TagDatz TaglD TxAntenna
00112233 4455 5544 232
0001 0203 0506 0708 030

8000 000D 000D 0000 000

010E 5FF5 4004 3003 A
005F 5115 4004 3003 A11

QIQREEER A004 3003 Al

4 tags found.

4. Configure
every reader here

Talk to Re

Send L Command Line:
- i i Count:72, Ant:2, Prote:1
® vework @ seral

ify Trigger:

Figure 30: Notifications Example Application

Ex9 — Data Streaming

All newest models of Alien readers support concept of streaming Tag and 10
data. This feature has been demonstrated with the sample application “Ex9 —
Notifications and Streaming on Network” for desktop and mobile platforms:

.NET DEVELOPER’S GUIDE
30 Doc. ConTROL # 8101948-000 Rev.H

CHAPTER 6

NOTIFICATIONS AND STREAMING

Last Notification from:
OGN aUUed . GO0 =TI ect 500 D39a T 1 204007
08131 18:20:55 495, Data:0

00:50:66:10:47.6C
10:DI, Time:2007/08/31 18:20:59.584, Data: 1

Connaction addad- hd 1868171 ade? ARALLAGA R4 4aRNARRTAR

Tag:DEAD BEEF CAFE FOOD 0000 111A, Disc:2
Proto:2

Tag:0000 0000 0000 0000 0000 0009, Disc: 20074
Tag:E200 3411 B301 0103 6500 3102, Disc:2

b4196128-edc?-46f0-bh0d-B4d=B0588288
Tag:E200 3411 B301 0103 6500 31
Tag:DEAD BEEF CAFE FOOD 0000 1114, Dis
Pmto 2

Connection ended: bd4196128-edc2-4610-bbSd-84de80855288

Connection added: 12752208 6f0f-41c0-b1d3-cfa65195d7
aN-AN-RR-10-47-RC

¥ Ex9 - Hetwork only Notifications

. Count:80, Ant:0,
, Count:12, Ant:0, Proto:2
371, Count:8, Ant:3, Proto:2
08.153, Count:69, Ant:1, Proto:?
1:08.13. Count:12, Ant:0,

8.130, Count:2, Ant:0, Proto:2
06.967, Count:1, Ant:2, Proto:2

ag:E200 3411 BE01 0108 6500 3106, Disc:2007/08/31 18:21:10.145, Last:2007/08/31 18:21:10.145, Count:1, Ant:0, Proto:2

Taé E200 34.11.5001 0108 6500 3106, Disc:2007/06/31 18:21:10.207, Last:2007/08/31 18:21:10.207, Count:1, Ant:0, Proto:2

00:30:66:10:47-BC

Tag:E200 3411 5301 0108 6300 3106, Disc:2007/08/31 18:21:

00:80:66:10:47-BC
Tag:E200 3411 B301 0103 6500 31086, Disc:

00:80:66:10:47-BC

Tag:E200 3411 B301 0103 6500 3106, Disc:2007/08/31 18:21:10.283, Last:2007/08/31 15:21¢

00:50:66:10:47.BC

Tag:E200 3411 B301 0103 6500 3106, Disc:2007/08/31 18:21:10.449, Last:2007/08/31 1

00:50:66:10:47.6C

226, Count:1, Ant:1, Proto:2

Tag Stream Events
raised for every
single tag read

——

<mllv| TagStream Server D

Servers:

Current

4 Notify Server Connections Count:

I 10Siream Server =

Add all
& Discovered
Readers

Current Active
Readers:

0 105tream

Add Reader ...

Last I0Stream event:

Reader's MAC Address: 00:80:66:10:47:BC
Time; 2:2(.59.5840000
10 Type:

10 Value:

Figure 31: Ex9 - Data Streaming on Network sample application

Streaming is the fastest way to get data from the reader. The Tag Stream can be
used instead or along with Tag Notifications. It is possible to set separate
configuration for tag, digital input/output, and tag notifications.

This desktop application uses three different server objects listening on different
ports for:

* Tag Notifications
* Tag Stream Messages
* |0 Stream Messages

When connected to a discovered or added manually reader the application first
saves reader’s configuration, then prepares it for sending Notification and/or
Streaming messages and after checking corresponding check-boxes acquires
incoming messages.

When closing the application restores all readers’ state prior to disconnecting.
Note that if stopped from the debugger, this application will NOT restore readers
state.

.NET DEVELOPER’S GUIDE
Doc. CoNTROL #8101948-000 Rev. H 31

NOTIFICATIONS AND STREAMING CHAPTER 6

Below is capture of the running sample application for Windows Mobile utilizing
Alien Mobile API as well as the AlienDataDirector class for transferring received
by mobile device data from the reader to a desktop host.

Here is how to set this example:

1. Ensure that reader, mobile device, and your PC connected and configured
on network, so they can ping each other.

2. Start the “Ex9 — TCP Listener” sample application on PC first, enter the local
IP Address and click “Start Listening.”

3. Start the mobile “Ex9 — Notifications and Streaming on Network.” The
application creates three server objects and starts listening on all of them by
default.

4. Check the “Connect” checkbox. Enter the same IP Address and port values
that have been used in the previous step in the desktop application.

5. Mobile application displays discovered readers in the treeview. You can also
add reader by clicking “Add Reader” button and entering its connection
information.

6. Checking the “Notify”, “TagStream”, and/or “IOStream” nodes on a reader
allows to receive different messages from, display them in the mobile
application and also transfer them automatically to the host computer
application:

Simple TCP Listener -0l x|
Local TP Address: Local Port: E Stop Listening

o -l x|

File Zoom Tools Help

Reader, Msgs -> PPC -

0000 0000 D000 6103 6520 2470,0,1[w\n]0]
0001 0203 0405 0607 0805 004C.0,1[\n][D]

Data Redirection Status

Add Reatlr

ol MHotiFy

v'| Tagatream
| [0akream

Figure 32: Mobile device receives data from reader and transfers them to a
desktop application

.NET DEVELOPER’S GUIDE
32 Doc. ConTROL # 8101948-000 Rev.H

CHAPTER 7

READER FIRMWARE UPGRADE

CHAPTER 7
Reader Firmware Upgrade

This feature is not available in the Alien Mobile API.

The Alien .NET API provides an easy way for upgrading Alien readers with a new
firmware by calling the clsReader.UpgradeFirmware() method providing
firmware file path as an argument. As upgrading process may take a few
minutes the result of upgrading comes back with the UpgradeComplete event.
Also, during an upgrade there are UpgradeProgress events raised reporting
current upgrade information.

Please use the “Ex10 — Reader Upgrade” sample application as a working
example for upgrading firmware. It uploads a new firmware file to the reader,
reboots the reader if needed, and reconnects and restores reader’s properties
after successful upgrade.

£8 Alien Library .NET - Upgrade Reader's Firmware

—Status:

Connect + Login

Figure 33:

PercentDone: 93
Message: Uploading firm file. Please wait. ..

Firmware Upgrading with the Ex10 sample application

Note: With current reader’s firmware it is necessary to use a Configuration file
(App.config) that allows unsafe parsing of HTTP headers. This file must contain
a line like the following:

<httpWebRequest useUnsafeHeaderParsing="true" />

If such a file will NOT be used, then even after a successful upgrading the API
will not be able to communicate with reader directly after upgrade completion and
will report the “Server committed a protocol violation” failure. We’ll eliminate
need of this file in future firmware releases.

.NET DEVELOPER’S GUIDE

Doc. CoNTROL # 8101948-000 Rev. H 33

INTELLIGENT TAG RADAR CHAPTER 8

CHAPTER 8
Alien Intelligent Tag Radar °

Alien's patented Intelligent Tag Radar® (ITR) software is an extension to the
popular Alien Reader Protocol for Alien's Enterprise Class reader family, which is
composed of the ALR-9900, 9800 and 8800 models.

Alien .NET API supports ITR by following features newly added in the v.2.1:

e New tag information fields:

e Speed
e RSSI
e Direction

e New methods for parsing reader's messages according a custom taglist /
tagstream format (tag data fields must be separated by at least one character):

Taglnfo Taglnfo.Parse(string customFormat, string sTag)
Taglnfo AlienUtils.ParseCustomTag(string customFormat, string tag)
Taglinfo[] AlienUtils.ParseCustomTagList(string customFormat, string
taglist)

¢ Taglnfo AlienUtils.ParseTagData (string customFormat, string msg)

e New reader properties in the clsReader:

e string SpeedFilter
e string RSSIFilter

e New GUI control for demonstrating ITR: AlienTagControl

e New Example 13 — Intelligent Tag Radar sample application that demonstrates
some of the ITR features:

Alien Library .NET - Intelligent Tag Radar sample application

Network Settings Connection TagData:

ot R || o e [] my - Sode
@ Seral Word Pointer: Word Count: Speed Filter: RS3I Filter:

Last Seenat: 6:37:40.99 :37:40. Last Seenat: 6:37:38.26 Seenat: 6371521
D 330C 3 563000

Reader configured OK.

®
Figure 34: Demonstrating Alien Intelligent Tag Radar features.

.NET DEVELOPER’S GUIDE
34 Doc. ConTROL # 8101948-000 Rev.H

