
ALIEN TECHNOLOGY

.NET API

DEVELOPER'S GUIDE

April 2009

All Full

Featured

Readers

 i

Legal Notices
Copyright © 2008 Alien Technology Corporation. All rights reserved.

Alien Technology Corporation has intellectual property rights relating to technology
embodied in the products described in this document, including without limitation certain
patents or patent pending applications in the U.S. or other countries.

This document and the products to which it pertains are distributed under licenses
restricting their use, copying, distribution and decompilation. No part of this product
documentation may be reproduced in any form or by any means without the prior written
consent of Alien Technology Corporation and its licensors, if any. Third party software is
copyrighted and licensed from Licensors. Alien, Alien Technology, the Alien logo,
Nanoblock, Fluidic Self Assembly, FSA, Gen2Ready, Squiggle, RFID Gateway,
Nanoscanner and other graphics, logos, and service names used in this document are
trademarks of Alien Technology Corporation in the U.S. and other countries. All other
trademarks are the property of their respective owners. U.S. Government approval
required when exporting the product described in this documentation.

Federal Acquisitions: Commercial Software -- Government Users Subject to Standard
License Terms and Conditions. U.S. Government: If this Software is being acquired by or
on behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government's rights in the Software and
accompanying documentation shall be only as set forth in this license; this is in
accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense
(DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARANTEES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGMENT ARE HEREBY DISCLAIMED, EXCEPT TO THE EXTENT THAT
SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

 TABLE OF CONTENTS

.NET DEVELOPER’S GUIDE

DOC. CONTROL # 8101948-000 REV. H 1

Alien Technology

.NET Developer’s Guide (v.2.3)
All Full Featured Readers

Table of Contents

CHAPTER 1 INTRODUCTION ... 1

Audience .. 1

Overview .. 1

Installation ... 4

CHAPTER 2 SUPPORTING DATA TYPES ... 5

Introduction .. 5

The ReaderInfo Class.. 6

The TagInfo Class ... 7

The NotifyInfo Class .. 8

The AlienIOInfo Class.. 9

The UpgradeInfo Class.. 10

CHAPTER 3 THE CLSREADERMONITOR CLASS .. 11

Introduction .. 11

Serial Discovery and Monitoring .. 13

Network Discovery and Monitoring .. 15

CHAPTER 4 THE CLSREADER CLASS ... 17

Introduction .. 17

Instancing a Reader from the clsReaderMonitor Discovery Class .. 17

Instancing a Reader Directly On a Serial Connection ... 17

Instancing a Reader Directly on the Network .. 18

Opening and Closing Connection to a Reader .. 18

Communication with a Reader .. 20

CHAPTER 5 TAG WORKS .. 22

Introduction .. 22

Reading Tags .. 22

Programming Tags .. 24

CHAPTER 6 ALIEN NOTIFICATIONS AND STREAMING ... 28

Introduction .. 28

Retrieve Notifications Synchronously .. 29

Asynchronous Notifications ... 29

CHAPTER 7 READER FIRMWARE UPGRADE.. 33

CHAPTER 8 ALIEN INTELLIGENT TAG RADAR



 ... 34

TABLE OF CONTENTS

 .NET DEVELOPER’S GUIDE
 DOC. CONTROL # 8101948-000 REV. H

iii

Table of Figures
Figure 1: Alien RFID Library class diagram ... 3

Figure 2: Alien RFID Library enumerations ... 5

Figure 3: ReaderInfo class .. 6

Figure 4: Class TagInfo .. 7

Figure 5: Class NotifyInfo .. 8

Figure 6: Class AlienIOInfo ... 9

Figure 7: Class UpgradeInfo ... 10

Figure 8: Example of Subscribing to clsReaderMonitor events in C# .. 11

Figure 9: Example implementation of the clsReaderMonitor.ReaderAdded event .. 12

Figure 10: Updating ListBox lbReaders with received data ... 12

Figure 11: Manually checking presence of Alien readers on Com ports .. 13

Figure 12: Getting current reader list on Com ports ... 14

Figure 13: Clearing the current list of serial-connected readers, GUI, and the collection variable 14

Figure 14: Example application # 5 in actions.. 15

Figure 15: Monitoring Alien Readers both on network and serial connecitons ... 16

Figure 16: Creating an instance of the reader from the Reader Monitoring ... 17

Figure 17: Initializing reader for serial communication ... 17

Figure 18: Initializing reader for network communication ... 18

Figure 19: Opening connection to the reader .. 18

Figure 20: Logging to the network ... 19

Figure 21: Comand/Response communication of Alien reader with a mobile device. .. 20

Figure 22: Synchronous and asynchronous reader responses ... 21

Figure 23: Obtaining reader internal Tag list .. 22

Figure 24: Tag list returned in Text format (default) .. 22

Figure 25: Tag list returned in XML format ... 23

Figure 26: Parsing obtained Tag list ... 23

Figure 27: Ex6 – Tag List running.. 24

Figure 28: Example11 - Programming Tags running ... 26

Figure 29: Members of the CAlienServer class .. 28

Figure 30: Notifications Example Application ... 30

Figure 31: Ex9 – Data Streaming on Network sample application ... 31

Figure 32: Mobile device receives data from reader and transfers them to a desktop application 32

Figure 33: Firmware Upgrading with the Ex10 sample application ... 33

Figure 34: Demonstrating Alien Intelligent Tag Radar

 features. ... 34

CHAPTER 1 INTRODUCTION

.NET DEVELOPER’S GUIDE

DOC. CONTROL # 8101948-000 REV. H 1

CHAPTER 1

Introduction

The .NET Developers’ Guide provides basic instructions for programmatically

controlling Alien RFID readers using Microsoft .NET Framework v.2.0. Alien
provides a number of assemblies (for both full and Compact Framework) as class
libraries, custom user controls and sample applications that are included

withinnnn Alien Developer's Kit.

Audience

For the purposes of this book, we assume the readers of this document:

• Have minimal previous knowledge of radio-frequency identification
technology,

• Are familiar with the Alien Reader ASCII Protocol (see Reader Interface
Guide, Doc# 8101938-000),

• Are experienced in .NET software development.

Overview

The Alien RFID Reader can be programmatically controlled using a number of
systems and languages. This document focuses on controlling the reader using
the Alien .NET API supplied with the developers’ kit. Terms Alien .NET Library
(Library) and Alien .NET API have been used in this document interchangeable.

Class library for full .NET Framework is called AlienRFID2.dll and for the
Compact Framework – AlienMobileAPI.dll.

NOTE: Not all features of the full library are supported by the mobile API
(e.g.: Firmware upgrade is not supported by mobile build.)

Alien Technology provides a number of example applications with their source
code developed in .NET environment (C# and VB.NET) as Alien .NET SDK
demonstrating how to use features of Alien readers and software. There is also
another set of sample applications developed with the Visual Basic 6
environment for demonstrating how to use the COM interface of the
AlienRFID2.dll described by the AlienRFID2.tlb type-library.

The class library contained within Alien .NET API provides type structures and
classes that constitute discrete functional groups for controlling various aspects
of the reader:

The class clsReader is the main class for interaction with an Alien reader. It
reflects the Alien Reader ASCII Interface described in the Reader Interface
Guide, doc #: 8101938-000 and has additional features related to a separate
reader device.

INTRODUCTION CHAPTER 1

 .NET DEVELOPER’S GUIDE

2 DOC. CONTROL # 8101948-000 REV.H

Library provides Discovery and Monitoring features – Classes for discovering the
location of readers connected via serial ports or networks as well as for
monitoring tags’ status read by a reader.

Library includes Storage Types – Data types for handling data about readers and
RFID tags. The Alien RFID classes clsReaderMonitor and clsReader use these
types to pass information to functions and user applications about the state of
readers connected to the system.

Though, the Alien .NET API had been started as a functional mirror to the
AlienRFIDLibrary.dll ActiveX component that had been used by developers with
Visual Basic 6 (VB6) since 2003, it has overgrew it with time. The .NET Library
doesn’t use MSComm control that was so popular for VB6 developers but
unfortunately has some limitations and license restrictions for redistribution.
Instead, the native .NET classes have been used as well as low level Win32 API
calls.

The following diagram demonstrates high-level structure of the Alien .NET API:

CHAPTER 1 INTRODUCTION

.NET DEVELOPER’S GUIDE

DOC. CONTROL # 8101948-000 REV. H 3

Figure 1: Alien RFID Library class diagram

INTRODUCTION CHAPTER 1

 .NET DEVELOPER’S GUIDE

4 DOC. CONTROL # 8101948-000 REV.H

Installation

To use the Alien RFID library from within .NET Development Environment the
corresponding assembly must be installed locally to the working directory of your
client application or into the Global Assembly Cache (GAC.)

A reference to installed Library must be added to the project.

For your convenience, you may want to add the nsAlienRFID2 (nsAlienRFIDcf for
mobile build) namespace to the section “using” in C# or section “Imports” in
Visual Basic.NET (VB.NET.)

Sample applications of the Alien .NET SDK with their source code have to be
copied and used locally. All sample applications included in the package use
local copies of the Library.

In order to see micro-help for Alien Library members in the Visual Studio .NET
provided with the Microsoft IntelliSence feature a corresponding *.xml file must
be placed in the same directory as the Library.

The Alien .NET API Documentation.chm file provides the MSDN-style help for all
classes, methods, properties, and types of the Library. It can be open from any
location disregarding the Library or SDKs source code.

There are also setup package and merge module included for redistribution
Library to COM users. Those provide installation to the Windows directory and
registration in Windows Registry. Please see the “Visual Basic Developers
Guide” for detailed information on using Library as a COM component.

CHAPTER 2 SUPPORTING DATA TYPES

.NET DEVELOPER’S GUIDE

DOC. CONTROL # 8101948-000 REV. H 5

CHAPTER 2

Supporting Data Types

Introduction

Object Browser available under the “View” menu entry in the VS.NET, allows one
to examine data types and interfaces provided within the DLL. There are several
supporting classes for working with reader and tag data: a number of
enumerations specifying some frequently used constants, a class with static
utility methods, and classes for storing information about reader, tag, tag
notification, IO event, reader upgrade etc.

The following figure details members of Alien .NET enumerations:

Figure 2: Alien RFID Library enumerations

Each of the following storage classes has a copy constructor and a
corresponding COM interface exposed by Library. Also, there are related utilities
in the AlienUtils class to parse a string from reader (in Text or XML format when
applicable) and return a data object.

SUPPORTING DATA TYPES CHAPTER 2

 .NET DEVELOPER’S GUIDE

6 DOC. CONTROL # 8101948-000 REV.H

The ReaderInfo Class

Figure 3: ReaderInfo class

Whether found through a call to the clsReaderMonitor.CheckComPorts()

method or by a multicast “Heartbeat” (see below), host applications are notified
of available readers via an event passing up an instance of the ReaderInfo

class. It contains key information that allows a software system to identify and
contact a reader. Information such as the reader name, type and address is
provided in this type.

CHAPTER 2 SUPPORTING DATA TYPES

.NET DEVELOPER’S GUIDE

DOC. CONTROL # 8101948-000 REV. H 7

The TagInfo Class

Figure 4: Class TagInfo

SUPPORTING DATA TYPES CHAPTER 2

 .NET DEVELOPER’S GUIDE

8 DOC. CONTROL # 8101948-000 REV.H

TagInfo is a type for holding information about tags. This type allows one to track
the Tag ID, the CRC for the Tag ID, the date and time the tag was last observed
by the reader as well as number of times tag has been observed. Functions
such as AlienUtils.ParseTaglist() return arrays of TagInfo objects from raw
string data read by the reader.

The NotifyInfo Class

Figure 5: Class NotifyInfo

NotifyInfo is a storage type for information sent by the reader automatically as a
Notification message and contains corresponding fields and properties. Client
application can use Alien Utilities methods that parse an incoming notification
string either in the Text format or as XML and return an instance of class
NotifyInfo.

CHAPTER 2 SUPPORTING DATA TYPES

.NET DEVELOPER’S GUIDE

DOC. CONTROL # 8101948-000 REV. H 9

The AlienIOInfo Class

Figure 6: Class AlienIOInfo

AlienIOInfo class contains properties characterizing an asynchronous Digital
Input or Output event as a part of Alien IO Stream as well as members of an
IOList returned by the reader synchronously.

The static AlienUtils.ParseAlienIOEvent() method returns an instance of this
class after parsing a string received from the reader.

NOTE: Older readers don’t support IO Stream and IOList.

SUPPORTING DATA TYPES CHAPTER 2

 .NET DEVELOPER’S GUIDE

10 DOC. CONTROL # 8101948-000 REV.H

The UpgradeInfo Class

Represents information included as a parameter in the UpgradeProgress and
UpgradeComplete events after calling the UpgradeFirmware() method.

This class also overrides the ToString() method to return a multi-line string with a
list of current properties formatted as <name>: <value> pairs

Figure 7: Class UpgradeInfo

CHAPTER 3 CLSREADERMONITOR

.NET DEVELOPER’S GUIDE

DOC. CONTROL # 8101948-000 REV. H 11

CHAPTER 3

The clsReaderMonitor Class

Introduction

In order to use and control an Alien reader it must first be discovered. This can
mean discovery on the network or discovery on serial ports. The
clsReaderMonitor contained within the Alien RFID Library is a class that can

automatically search for and discover readers using each of these connection
modes. Use methods StartListening and StopListening for starting

and stopping monitoring over both TCP and Serial connections.

All discovered readers information is stored in two separate collections and
monitored separately depending on the values of boolean
ComPortsMonitoring and NetworkMonitoring properties. The methods

GetReaderList() and ClearAllReaders() apply to all readers on both

serial and network connections.

Similarly, the events ReaderAdded, ReaderRenewed, ReaderRemoved, and

ReaderListUpdated get raised for both serial and network connected readers

and contain information about all discovered readers.

In order to receive clsReaderMonitor events client application must subscribe to
them and implement event handler procedures.

In VB.NET this is done by declaring an object of clsReaderMonitor WithEvents
and writing event-handler routines.

The code in the Development Kit demonstrates how to do this in C#:

Figure 8: Example of Subscribing to clsReaderMonitor events in C#

CLSREADERMONITOR CHAPTER 3

 .NET DEVELOPER’S GUIDE

12 DOC. CONTROL # 8101948-000 REV.H

During automatic monitoring all events get raised on a ThreadPool thread and
should not be used for updating GUI. Moreover, when inside an event-handler
procedure, the further discovery and monitoring process has been disabled until
return. So, it is essential to not to include prolonged operations in an event-
handler method.

Application #4 provides one approach to managing data passed with events.
Received ReaderInfo data get added to module-level collection variables. After
this the control on this ThreadPool thread is immediately returned to the library.
Accumulated in collections data get processed by a System.Timers.Timer object
synchronized with the current form. This allows to manage the Timer_Elapsed()
event on the GUI thread and to avoid a longer manual Invoking. Client
application can manage timer’s time-interval separately.

Figure 9: Example implementation of the clsReaderMonitor.ReaderAdded event

 (Quickly assign received data to the mReaderList ListDictionary and return)

Figure 10: Updating ListBox lbReaders with received data

CHAPTER 3 CLSREADERMONITOR

.NET DEVELOPER’S GUIDE

DOC. CONTROL # 8101948-000 REV. H 13

Alternatively, the cldReaderMonitor.SynchronizingObject property can be
assigned with the current form object. This will result in shorter code and allow to
update form’s controls directly from event-handlers procedures though it appears
to partially freeze GUI.

Please see Example applications # 4, # 5, and # 7 provided with the
Development Kit for more details on serial and network discovery and monitoring
and for different approaches to managing of multi-threading result.

Serial Discovery and Monitoring

The clsReaderMonitor checks all available com ports (excluding modem

ports) listed in the registry key HKLM\HARDWARE\DEVICEMAP\SERIALCOMM\
and the sub-key Device.

Discovery of Alien readers attached to serial ports of a host computer supports
manual calls to the CheckComPorts() and GetReaderListOnSerial()

methods. Both methods return synchronously after completion of operation.
The CheckComPorts() method returns with an empty string or “No reader
found”.

Figure 11: Manually checking presence of Alien readers on Com ports

The GetReaderListOnSerial() method returns number of readers found

and an array of currently known readers connected to the serial port. A client
application obtains the current reader list by calling this function and passing a
not-initialized array of type ReaderInfo as an “out” parameter to the second
method.

CLSREADERMONITOR CHAPTER 3

 .NET DEVELOPER’S GUIDE

14 DOC. CONTROL # 8101948-000 REV.H

Figure 12: Getting current reader list on Com ports

Setting the property ComPortsMonitoring = true allows to detect Alien

readers connected to available Com ports automatically. The client application in
this case has to subscribe to the events ReaderAddedOnSerial,

ReaderRenewedOnSerial, or ReaderRemovedOnSerial raised by the library

and implement methods for handling these events in a way similar to the
demonstrated in the previous section.

There is also method ClearSerialReaders() available for more flexible

managing of discovered readers. It erases all items from the current list of
readers on Com ports. This method doesn’t affect list of network-connected
readers. Therefore, if there are on-line and the NetworkMonitoring property

is set to true, method GetReaderList() can return not empty.

Figure 13: Clearing the current list of serial-connected readers, GUI, and

the collection variable

CHAPTER 3 CLSREADERMONITOR

.NET DEVELOPER’S GUIDE

DOC. CONTROL # 8101948-000 REV. H 15

Network Discovery and Monitoring

Each Alien reader is configured by default to send out broadcast messages to its
local subnet. These messages are small XML documents detailing the reader
type, name, and contact information. By listening for these messages, instances
of the clsReaderMonitor class can identify and report back details of readers

that are alive and on the network. To enable network monitoring set the
NetworkMonitoring property to true.

The class instance will catch reader “heartbeats”, decode them into ReaderInfo

type objects, and update its internal Reader list with this information, raising
either ReaderAddedOnNetwork, or ReaderRenewedOnNetwork events to

an application.

Part of the heartbeat sent out by the reader indicates the time until the next
heartbeat is expected. If this time expires before a new heartbeat is received,
then the class will assume the reader has gone offline and will raise the
ReaderRemovedOnNetwork event.

At any time the current list of the on-line networked readers can be obtained by
calling the clsReaderMonitor.GetReaderListOnNetwork() method.

This will return a number of currently on-line readers and an array of ReaderInfo
objects the same way as illustrated above.

The method ClearNetworkReaders() erases all items from the current list of

readers discovered on network. It doesn’t affect list of serial-connected readers.
Therefore, if there are readers on Com ports and ComPortsMonitoring

property is set to true, method GetReaderList() can return not empty.

Please see examples above and SDK for coding guidelines.

Figure 14: Example application # 5 in actions

CLSREADERMONITOR CHAPTER 3

 .NET DEVELOPER’S GUIDE

16 DOC. CONTROL # 8101948-000 REV.H

The following figure shows the screenshot of the Example application # 7 in
actions demonstrating monitoring readers on both network and serial
connections.

Figure 15: Monitoring Alien Readers both on network and serial connecitons

 Check to enable

Monitoring Com Ports

 Check to enable

Monitoring Heartbeats

over the Network

CHAPTER 4 CLSREADER

.NET DEVELOPER’S GUIDE

DOC. CONTROL # 8101948-000 REV. H 17

CHAPTER 4

The clsReader Class

Introduction

The clsReader class is used for communicating with a reader either over the
network or serial port. Typically the clsReader object will be initialized with data
obtained from a clsReaderMonitor class, discussed in the previous section.
However if the location (either serial port name or network address) is known, a

clsReader object can be instantiated directly without the need of any discovery

class.

Once a valid reader object is available, it offers the user a number of simple
commands that implement the full command set described in the Alien Reader
Interface Guide.

Instancing a Reader from the clsReaderMonitor Discovery
Class

If a discovery class is used (see previous section), any readers that are found on

the network or serial ports will result in a ReaderInfo data type object being

passed to the application. To convert this data into a clsReader object, declare

an instance of the clsReader class and use the

clsReader.ReaderSettings property:

 private void mMonitor_ReaderAdded(ReaderInfo data) {

 clsReader r = new clsReader();

 r.ReaderSettings = data;

 }

Figure 16: Creating an instance of the reader from the Reader Monitoring

Instancing a Reader Directly On a Serial Connection

If it is known that a reader exists on a specified serial port, a new Reader object
can be initialized with default or pre-defined settings directly without having to
use the discovery classes.

 private clsReader mReader = new clsReader();

 ...

 private void btnConnect_Click(object sender, System.EventArgs e) {

 mReader.InitOnCom();

 ...

 }

Figure 17: Initializing reader for serial communication

CLSREADER CHAPTER 4

 .NET DEVELOPER’S GUIDE

18 DOC. CONTROL # 8101948-000 REV.H

In the example above, a new reader object is created and initialized on Com port
using InitOnCom() function. This method has two overloads: one initializes

reader object on a default Com port, another includes an integer argument
specifying Com port number.

This is all that is required to instance a new reader object. This will tell the

mReader object that it has to prepare to serial communication with reader. Using

properties of clsReader, you can specify other Com port settings prior to

opening port.

Instancing a Reader Directly on the Network

If it is known that a reader exists at a specified network address, a new reader
object can be created directly without having to use the discovery class in a
manner similar to instancing a reader directly on a serial port.

In this case function InitOnNetwork() should be used passing two argument

required for initializing an object for network communication: a string for
IPAddress and an integer for port number.

 mReader.InitOnNetwork (txtIPAddress.Text, 23);

Figure 18: Initializing reader for network communication

NOTE: If the InitOnCom() or InitOnNetwork() functions had been called on

a connected object of class clsReader, this will cause the existing connection

to be closed.

Opening and Closing Connection to a Reader

Once a Reader object has been instanced and its connection settings configured,
a connection to it can be opened and the reader can be used. This is achieved
using a single method:

 String result = mReader.Connect();

Figure 19: Opening connection to the reader

Calling this method will open the connection either serial or networking. This
method returns synchronously after finishing operation. The return value is a
string indicating status:

• “Already connected”, if object had been connected before calling this
method.

• “Connected”, on success.

CHAPTER 4 CLSREADER

.NET DEVELOPER’S GUIDE

DOC. CONTROL # 8101948-000 REV. H 19

• “Can’t connect” or “Alien caught exception: “ with exception message
appended in case of failure.

In case of serial connection, library opens com port and sends to the readers a
set of basic commands in order to verify if the reader can respond.

On success, this method raises Connected event to the calling application. This

event can be raised on a separate thread depending on the connection type.

Use boolean IsConnected property to test if connection is open.

In case of network interface type, although connected, at this point the
application cannot yet make use of the reader object. For that, a second method
must be issued to login to the reader as shown in the code sample:

 if (mReader.IsConnected) {

 txtResult.AppendText(result);

 if (mReader.Login("alien", "password")) {

 DisplayText("Logged in - OK!");
 }

 else {

 DisplayText("Login failed");

 mReader.Disconnect();

 }

 }

Figure 20: Logging to the network

All network based readers require a username and password to use them. By
default all network readers will use “alien” as the username and “password” as
the password. Once connected and logged in, these can be changed and
verified using the clsReader.Password and clsReader.UserName

properties.

Failure to set the correct username and password when logging in will return a
boolean value of “false” from a call to the above function.

Finally, a connection to a reader can be closed using the Disconnect method.

This method returns synchronously after closing connection and destroying all
supporting threads.

The return value is:

• Empty string on success

• “Not connected” if not applicable

• “Alien caught exception: “ with exception message appended in case of
any unexpected failure.

On success, this method raises Disconnected event to the calling application

with “Disconnected by client” string argument value.

CLSREADER CHAPTER 4

 .NET DEVELOPER’S GUIDE

20 DOC. CONTROL # 8101948-000 REV.H

Communication with a Reader

All commands to and from the reader (see Alien Reader Interface document for
details) are ASCII text based messages that take the form of command-response
pairs. The clsReader class provides two generic methods called

SendReceive() and Send() for ASCII based communication with the reader.

The SendReceive() is synchronous (blocking) method. It takes an input string

containing a reader command with required parameters and a boolean flag
indicating whether the reader response should include user prompt for further
operations. Upon completion of operation, it returns a string with reader
response parsed for convenient use. In case of failure an exception will be
thrown.

The Send() is an asynchronous void method. It takes the first parameter same

as SendReceive method. The second parameter is a boolean flag indicating

whether the first parameter should be considered as “raw data” or not. It returns
immediately after sending data to the reader. In case if connection was not
established or has been lost, the Disconnected event shall be raised. Any

exception happened on the caller’s thread shall be re-thrown to the caller. The
reader’s response should be taken in one of the available events raised
asynchronously and on separate threads:

• DataReceived event containing a part of reader’s response usually

terminated by the “carriage return” and “new line” characters.

• MessageReceived event containing complete reader response

terminated by null-character.

 Figure 21: Comand/Response communication of

Alien reader with a mobile device.

CHAPTER 4 CLSREADER

.NET DEVELOPER’S GUIDE

DOC. CONTROL # 8101948-000 REV. H 21

Figure 22: Synchronous and asynchronous reader responses

To make life simpler for developers, the basic reader object also supports many
additional methods that directly correspond to the reader command set. These
methods and properties use synchronous communication with the reader. They
return after completion of a command by the reader with its response.

For example, the reader object has a property called PersistTime. This

property returns an integer number. It is effectively the same as calling the
SendReceive(“get PersistTime”, false) method and then parsing the

string reply into an integer.

TAG WORKS CHAPTER 5

 .NET DEVELOPER’S GUIDE

22 DOC. CONTROL # 8101948-000 REV.H

CHAPTER 5

Tag Works

Introduction

The reader can program an individual tag and/or read tags’ data.

While older readers supported only working with EPC ID field of the EPCglobal
Class1 tags, the ALR-9800 readers utilizing Class1 Generation2 tags can read
and program other memory banks also. There are many reader’s properties that
affect acquiring or writing data from/to tags. Please refer to the Alien Reader
Interface documents for more details.

Reading Tags

As discussed in the Alien Reader Interface Guide, there are a number of ways to
read tags. In interactive mode, the reader can read multiple tags at once using
the get TagList commands:

 string result = mReader.TagList;

 Figure 23: Obtaining reader internal Tag list

When reading tags ID field, TagList can be represented in several formats:
(default) Text, XML, Terse, or custom. The AlienUtils class provides static
methods (and clsReader and CAlienServer non-static methods) for parsing tag
list strings into an array of TagInfo objects (Described above) that may be more
convenient for developers to use.

Note: These parsing features have been implemented only for the Text, XML,
and Custom formats (please note that not all Custom formats can be parsed by
current version of API: data fields in tag information must have at least one
separator character (like a space, for example.)

Figure 24: Tag list returned in Text format (default)

CHAPTER 5 TAG WORKS

.NET DEVELOPER’S GUIDE

DOC. CONTROL # 8101948-000 REV. H 23

Figure 25: Tag list returned in XML format

Each of these strings can be turned into an array of TagInfo objects by passing
the string to a Tag List parsing method.

Figure 26: Parsing obtained Tag list

TAG WORKS CHAPTER 5

 .NET DEVELOPER’S GUIDE

24 DOC. CONTROL # 8101948-000 REV.H

Note: The abbreviated tag list format does not contain antenna information or
discovery times as part of the data.

The included into the Alien .NET SDK sample application “Ex6 – Tag List”
demonstrates reading tags ID field and parsing TagList results:

Figure 27: Ex6 – Tag List running

The other principle ways to read tags are based on autonomous mode and
asynchronous reader messages sent when readers NotifyMode or
TagStreamMode are ON. If using network connection to the reader then these
messages must be obtained by another API object and managing events raised
by this object. Please see the Chapter 6: The CAlienServer Class for details.

Programming Tags

The following programming related methods and properties are available with the
Alien .NET API on an instance of the clsReader object:

 Commands supported by all readers

∗ ProgramTag

∗ EraseTag

∗ LockTag

CHAPTER 5 TAG WORKS

.NET DEVELOPER’S GUIDE

DOC. CONTROL # 8101948-000 REV. H 25

∗ KillTag

∗ ProgIncrementOnFail

∗ ProgramPassCode

∗ ProgramID

∗ ProgAttempts

∗ ProgEraseAttempts

∗ ProgReadAttempts

∗ ProgSucessFormat

 Commands supported by ALR-9800 and later:

∗ PrgramEPC

∗ ProgramAndLockEPC

∗ ProgramUser

∗ ProgramAndLockUser

∗ ProgramKillPwd

∗ ProgramAccessPwd

∗ ProgEPCData

∗ ProgEPCDataInc

∗ ProgC1KillPwd

∗ ProgG2KillPwd

∗ ProgG2AccessPwd

∗ ProgUserData

∗ ProgUserDataInc

∗ ProgG2LockType

∗ Lock

∗ Unlock

∗ G2Write

∗ ProgramAlienImage

∗ ProgAlienImageMap

∗ ProgAlienImageNSI

The sample application “Example11 – Programming Tags” with its source code is
included in the Alien .NET SDK to demonstrate various programming features of
Alien readers and the .NET API.

TAG WORKS CHAPTER 5

 .NET DEVELOPER’S GUIDE

26 DOC. CONTROL # 8101948-000 REV.H

Figure 28: Example11 - Programming Tags running

Select

programming

antenna
Adjust RF

Power

User data BEFORE

programming

Current tag ID

(EPC filed)

User data to

program Select

programming

action

User data AFTER

programming

CHAPTER 5 TAG WORKS

.NET DEVELOPER’S GUIDE

DOC. CONTROL # 8101948-000 REV. H 27

Selecting from the “Command” combo-box a command that uses a pre-defined
parameter causes the combo-box “Options” to be filled with suitable values and
current value has been selected in the latter.

Application allows also selecting and adjusting power for programming antenna
as well as programming protocol and acquisition parameters.

You can read any field in a Class1 Gen2 tag by selecting a Gen2 Bank, a word
pointer where to start reading, and word length specifying how many words to
read.

You can write to any field in a Class1 Gen2 tag (subject to a tag’s state) using
different methods.

NOTES:

1. Prior to programming make sure your reader can successfully
singulate a tag indicated by a green background of the CurrentID label.

2. Not every Class1 Gen2 tags can make use of all memory banks.
Please consult tag vendor documentation.

3. The ProgramAlienImage, ProgAlienImageMap, and
ProgAlienImageNSI commands intend for use with Alien tags (Higgs)
only.

4. Currently, after changing the ProgAlienImageMap for a Higgs tag
from the default EPC96 to a different memory map, you may use the
ProgramAlienImage command just ONCE. Any subsequent use of this
command will fail. Instead, you can successfully program separate parts
of the tag’s memory by use of the G2Write, ProgramUser, ProgramEPC
etc. commands.

NOTIFICATIONS AND STREAMING CHAPTER 6

 .NET DEVELOPER’S GUIDE

28 DOC. CONTROL # 8101948-000 REV.H

CHAPTER 6

Alien Notifications and Streaming

Introduction

The CAlienServer class provides methods for listening for asynchronous
messages as Alien Notifications and/or Tag- and IO-Stream events sent by Alien
Readers over network.

You can create several server objects for listening on different types of
messages and/or on messages from different readers using different port
numbers.

If you don’t specify explicitly, the first available IP Address from the list resolved
for this host machine by DNS will be used to listen on.

The following figure lists members of the CAlienServer class:

Figure 29: Members of the CAlienServer class

CAlienServer maintains a collection of established connections identifying each
connection with an unique identifier (GUID) and precedes all event messages
with this connection specific GUID.

CHAPTER 6 NOTIFICATIONS AND STREAMING

.NET DEVELOPER’S GUIDE

DOC. CONTROL # 8101948-000 REV. H 29

Retrieve Notifications Synchronously

In case of NO subscribers to the ServerMessageReceived event, all incoming
messages get collected in an internal queue limited to a maximum defined by the

MaxQueuedMessages property (default is 100.) A client application can retrieve

these messages synchronously by calling methods

GetCurrentNotifications() and GetCurrentIOEvents(). Returned

messages will be cleared from the queue by these calls.

This feature intends for a development environment less suitable for multi-
threading (e.g.: Visual Basic 6) and is demonstrated in the Alien VB6 SDK.

Asynchronous Notifications

User can subscribe to events raised by a server to receive updated information
about established / lost connections and incoming messages.

There are several example applications in the Alien .NET SDK named “Ex9 …”
provided with their source code that demonstrate how to use this functionality
among other Alien library features.

Since all events get raised on a thread different from the GUI thread, there
should be care taken when an applications receives an event and tries to update
its GUI. The source code of these examples demonstrates also how deal
effectively with the multithreaded events.

Ex9 - Notifications

Using Notifications Example Application you can listen to several readers that
send Tag Notification Messages through network and, additionally, one that has
NotifyAddress set to “Serial.”

The following is a series of steps for setting this example up and running:

1. Connect one or more Alien readers via both Serial and Network connectors.

2. Start the “Ex9 – Notifications” application.

3. Make sure your host PC and the reader(s) are on the same subnet.
Sometimes, there are more than one IP Address on a computer. The status
message will tell you if you select in the “IPAddress” ComboBox a wrong
one.

4. Using serial connection (the “Talk to Reader on Serial” group) configure
every reader for NotifyMode or both Notify- and AutoMode.

5. When configuring every reader, check the “Send Notifications to Network”
RadioBox for readers that use TCP connection for Notifications and the
“Serial” for the last one.

6. Watch network notifications caught by the CAlienServer class instance.

7. Watch serial notifications caught by the clsReader class instance.

NOTIFICATIONS AND STREAMING CHAPTER 6

 .NET DEVELOPER’S GUIDE

30 DOC. CONTROL # 8101948-000 REV.H

Figure 30: Notifications Example Application

Ex9 – Data Streaming

All newest models of Alien readers support concept of streaming Tag and IO
data. This feature has been demonstrated with the sample application “Ex9 –
Notifications and Streaming on Network” for desktop and mobile platforms:

4. Configure
every reader here

GUID added

by the server

6, 7. Watch

Notifications here

Get the Tag

List from

every reader

6. Switch Serial/Network Notifications

CHAPTER 6 NOTIFICATIONS AND STREAMING

.NET DEVELOPER’S GUIDE

DOC. CONTROL # 8101948-000 REV. H 31

Figure 31: Ex9 – Data Streaming on Network sample application

Streaming is the fastest way to get data from the reader. The Tag Stream can be
used instead or along with Tag Notifications. It is possible to set separate
configuration for tag, digital input/output, and tag notifications.

This desktop application uses three different server objects listening on different
ports for:

∗ Tag Notifications

∗ Tag Stream Messages

∗ IO Stream Messages

 When connected to a discovered or added manually reader the application first
saves reader’s configuration, then prepares it for sending Notification and/or
Streaming messages and after checking corresponding check-boxes acquires
incoming messages.

When closing the application restores all readers’ state prior to disconnecting.
Note that if stopped from the debugger, this application will NOT restore readers
state.

IO Stream messages

Notification messages

Tag Stream Events

raised for every

single tag read

NOTIFICATIONS AND STREAMING CHAPTER 6

 .NET DEVELOPER’S GUIDE

32 DOC. CONTROL # 8101948-000 REV.H

Below is capture of the running sample application for Windows Mobile utilizing
Alien Mobile API as well as the AlienDataDirector class for transferring received
by mobile device data from the reader to a desktop host.

Here is how to set this example:

1. Ensure that reader, mobile device, and your PC connected and configured
on network, so they can ping each other.

2. Start the “Ex9 – TCP Listener” sample application on PC first, enter the local
IP Address and click “Start Listening.”

3. Start the mobile “Ex9 – Notifications and Streaming on Network.” The
application creates three server objects and starts listening on all of them by
default.

4. Check the “Connect” checkbox. Enter the same IP Address and port values
that have been used in the previous step in the desktop application.

5. Mobile application displays discovered readers in the treeview. You can also
add reader by clicking “Add Reader” button and entering its connection
information.

6. Checking the “Notify”, “TagStream”, and/or “IOStream” nodes on a reader
allows to receive different messages from, display them in the mobile
application and also transfer them automatically to the host computer
application:

Figure 32: Mobile device receives data from reader and transfers them to a

desktop application

CHAPTER 7 READER FIRMWARE UPGRADE

.NET DEVELOPER’S GUIDE

DOC. CONTROL # 8101948-000 REV. H 33

CHAPTER 7

Reader Firmware Upgrade
This feature is not available in the Alien Mobile API.

The Alien .NET API provides an easy way for upgrading Alien readers with a new
firmware by calling the clsReader.UpgradeFirmware() method providing
firmware file path as an argument. As upgrading process may take a few
minutes the result of upgrading comes back with the UpgradeComplete event.
Also, during an upgrade there are UpgradeProgress events raised reporting
current upgrade information.

Please use the “Ex10 – Reader Upgrade” sample application as a working
example for upgrading firmware. It uploads a new firmware file to the reader,
reboots the reader if needed, and reconnects and restores reader’s properties
after successful upgrade.

Figure 33: Firmware Upgrading with the Ex10 sample application

Note: With current reader’s firmware it is necessary to use a Configuration file
(App.config) that allows unsafe parsing of HTTP headers. This file must contain
a line like the following:

<httpWebRequest useUnsafeHeaderParsing="true" />

If such a file will NOT be used, then even after a successful upgrading the API
will not be able to communicate with reader directly after upgrade completion and
will report the “Server committed a protocol violation” failure. We’ll eliminate
need of this file in future firmware releases.

INTELLIGENT TAG RADAR CHAPTER 8

 .NET DEVELOPER’S GUIDE

34 DOC. CONTROL # 8101948-000 REV.H

CHAPTER 8

Alien Intelligent Tag Radar


Alien's patented Intelligent Tag Radar

®
 (ITR) software is an extension to the

popular Alien Reader Protocol for Alien's Enterprise Class reader family, which is
composed of the ALR-9900, 9800 and 8800 models.

Alien .NET API supports ITR by following features newly added in the v.2.1:

• New tag information fields:

• Speed

• RSSI

• Direction

• New methods for parsing reader’s messages according a custom taglist /
tagstream format (tag data fields must be separated by at least one character):

• TagInfo TagInfo.Parse(string customFormat, string sTag)

• TagInfo AlienUtils.ParseCustomTag(string customFormat, string tag)

• TagInfo[] AlienUtils.ParseCustomTagList(string customFormat, string
taglist)

• TagInfo AlienUtils.ParseTagData (string customFormat, string msg)

• New reader properties in the clsReader:

• string SpeedFilter

• string RSSIFilter

• New GUI control for demonstrating ITR: AlienTagControl

• New Example 13 – Intelligent Tag Radar sample application that demonstrates
some of the ITR features:

Figure 34: Demonstrating Alien Intelligent Tag Radar

 features.

